COMP 550 : Algorithms & Analysis - Preliminary Notes

What is the goal of this	-> Improve Knowledge & skills in the field of algorithms
5	-> Writing & using algorithms
	- Mathematically analyzing correctness & running time of algorithms.
	-> problem-solving paradigens leg, greedy vs dynamic)
	- computational complexity.

What is the "running time"	→ The maximum number (as a function of input length ,"") of primitive
of an avancitum?	operations that it executes

5	· e.g., a Tho)-time algorithm, given an input of length n,
	executes at most T(n) primitive operations on that input.
What is a primitive	- Operations (in the execution of code) that are relatively "simple" &
operation?	can be executed in very small amount of time (?)
	-> Rule of thumb: Pretty much any op. that can be written as one line
	of assembly code CRECALL: comp 211 !!) is a primitive operation.
Examples of primitive	-> Assigning a value to a variable x=0
operations?	→ performing a comparison if x > y:
	→ arithmetic operations x+y
	→ Indexing into an array arr [3]
	-> Calling or returning from a method (not necessarily performing the method itself)
RELALL COMP 455: How is	→ The running time , at a the time complexity of an algorithm , is the number of steps
running time defined ?	that it takes to solve a problem in the worst case , as a function of the input length.
	-> Formal DEFN : For a deterministic , decider TM M , the running time of M is the
	Function $f: N \rightarrow N$, where $f(n)$ is the <u>maximum</u> number of steps that M uses on
	any input of length n.
	. We use n to represent the length of an input (customarily)
	" IF f(n) is the running time of M, we say that "M is an f(n) Turing Machine"
	and thet "M runs in time f(n)"
RECALL: What is	-> A way to estimate the oxact woning time of an algorithm in order to understand the running
asymptotic analysis?	time of the algorithm when it is non on large inputs.
•	

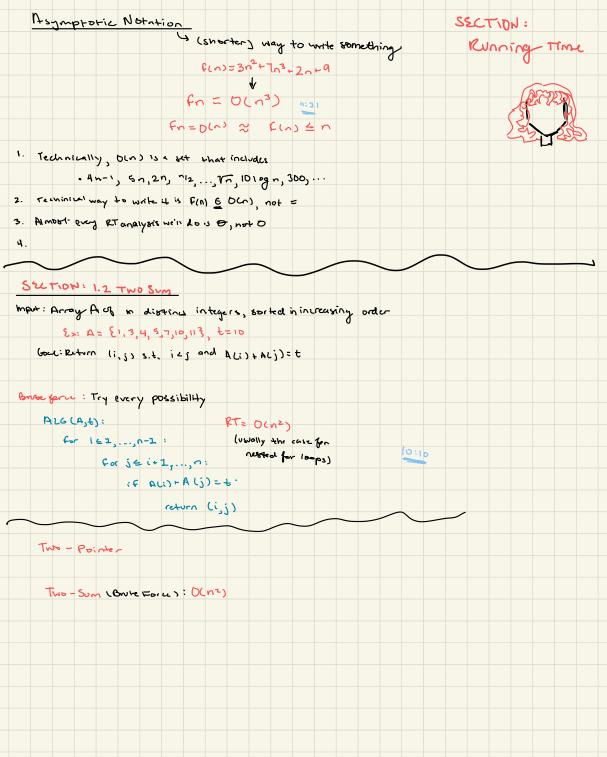
For the running time expression of an algorithm, consider only the highest-order term (aka term with largest exponent), and disregard the coefficient of that term as well as any lower order terms (ble they are insignificant in comparison).

· For EX, for the function f(n) = 6n3 + 2n2 + 20n + 45, we say that f is

asymptotically at most n3

Ch 1: Array Algorithms

CTI 2 HITAY HIGHT	
Key assumptions?	-> Every array has length n
	→ Array indices range from I to n (not D-(n-I) like you're used to)
- <u>Max</u>	in Array -
What is the input ?	> Array A of & distinct, positive integers
What is the goal ?	→ Return the largest integer in A in O(n) time.
	$\rightarrow \Sigma_{xample}: A = [5, 1, 4, 10, 8, 3]$
What is the algorithm?	m = A [1] m represents the "max valve". Start by setting it to A[1]
	For (2 ≤ i ≤ n): iterate through all values and update m by if A[i]>m: cetting m= A[i] whenever A[i]> surrent m.
What is the running time?	→ Aig loops through for-loop n-1 times
	· each iteration taxes O(1) time because its only primitive operations
	$ \rightarrow \text{ Therefore, } RT = (n-1) * (1) = n-1 = O(n) $
- <u>Iw</u>	
What is the input?	→ (A, t), where A = array of <u>n</u> distinct integers sorted in
	increasing order, and t & Z (t is some integer)
What is the goal?	→ Return a set of indices (i,j) s.t.:
	• ACi]+ ACj]=t, and ·i < j
What is the algorithm?	→ $Ex: A = [1,3,4,7,9,10,12] t = 13$
	ALG (intEIA, int t): -> Using a "2-pointer" technique
	i, j = 1, n - > start with AL1]+ jEn] as our First
	while $i < j$: candidate. IF $A[IJ + jEn] = t$, we can return.
	iF ACiJ + ACjJ = t:
	return (i,j)
	elif A[i]+A[j] <t:→if a[i]+a[j]="" i="" is="" move="" one<="" small,="" th="" too="" vp=""></t:→if>
	i += 1 to a larger value
	<pre>clse: → IF ACi] + AEj] is too big, move j down one j -= 1 to a smaller value.</pre>
	→ keep checking & adjusting until a solution is found.
What is the RT?	→ The alg makes a maximum of <u>n</u> iterations. Each require D(2) time. Thus,
	RT = 0(m)
What would the alg & RT	→ Brute-force alg ; D(n2)-Lime
be like if the array wasn't arready sorred?	
uncoury sorred	


What is the input? \rightarrow (A, t), where B = array of D distinct integers sorted in intracting order, and t $\in \mathbb{Z}$ (t is some integer) What is the goal? \rightarrow 10 it exists, return an index K. S.t. A [K]=t. \rightarrow Ex: A = (1,3,9,78,15] t=8 ANS = 5, be ASS = 8 What is the argorithm? $i,j = 1, n$ \rightarrow Stars of a pointer of the byoning R and like in 2-one. $i,j = 1, n$ \rightarrow Stars of a pointer of the byoning R and like in 2-one. $i,j = 1, n$ \rightarrow Stars of a pointer of the byoning R and like in 2-one. $i,j = 1, n$ \rightarrow Stars of a pointer of the byoning R and like in 2-one. $i,j = 1, n$ \rightarrow Stars of a pointer of the byoning R and like in 2-one. $i,j = 1, n$ \rightarrow Stars of a pointer of a pointer of the byoning R and like in 2-one. $i,j = 1, n$ \rightarrow Stars of a pointer of the main (b) is an index of A. i,j = n-2 new "beams" of acquires instant, there is a main create a i = m-2 new "beams" of acquires instant in the form one 2). j = m-4 is the value of index index in the left holds of the array. Why is the a grant the Stars index in the left holds of the array. Why is the RT? \rightarrow He durwy "brokes" on some theoretion. \forall Hou may therefore a start index index in the point t, and the Six of it shoulds in the set index of a some induction, and length 1 s = 1 to be some the some thermal index index in the point of a some induction, and length 1 s = 1 to be some the some thermal in the first is a some induction of the solutry with the array task $i = j - \lfloor \frac{i-1}{2} \rfloor \frac{i}{2} - \lfloor \frac{i-1}{2} + \frac{1}{2} - \lfloor \frac{i-1}$	<u> </u>	ary search -
$ \begin{array}{c} \text{intracting order, and the Z } \{t \text{ is some integer}\} \\ \text{What is the goal?} & \neg 10 \text{ it taiss, return an index } \text{k. s.t. } A[k]=t. \\ & \neg E \text{ it } A \in C(3,3,0,7,0,1,2,15,3) \\ & t = 8 \\ \text{What is the algorithm?} \\ \text{Alle(A,t):} \\ & \text{is the algorithm} \\ is the algorith$		
What is the good? \rightarrow 16 it exists, return an index K. S.t. A(K)=t. \rightarrow [X: A = (1,3,4,72,12,12,12) t = 8 MNS = 5,4c A(53+8) What is the algorithm? ALC(A,2): $i,j = 1, n$ \rightarrow Stee wile parter at the balancing & ind, like in 2-one. What is the algorithm? ALC(A,2): $i,j = 1, n$ \rightarrow Stee wile parter at the balancing & ind, like in 2-one. What is the algorithm? ALC(A,2): $i,j = 1, n$ \rightarrow Stee wile parter at the balancing & ind, like in 2-one. What is the algorithm? ALC(A,2): $i,j = 1, n$ \rightarrow Stee wile parter at the balancing & ind, like in 2-one. What is the algorithm? If the algorithm index is a second of the algorithm index is a second of the array. Why is thick algorithm ? If the value ξ the middle index is the small, create a $i = m \cdot 1$ for value ξ middle index is the small, create ξ and the site of the array. Why is thick algorithm ? If the value ξ is the value ξ is a first balance in the index of ξ . Why is thick algorithm is the site of the streng of the array. Why is thick algorithm? If the site of the streng of the array. Why is thick algorithm is the site of the site of the streng of the array. Why is thick algorithm is the site of the site		
$ \begin{array}{c} \rightarrow E_{X}: A \in [1,3,4,7,7,15,15] E = 8 ANS = 5, be AE5 = 8 \\ What is the algorithm 1 \\ \hline \\ ALC(A, E): \\ i,j = 1, n for stree will a pointer at the beginning & red, like in 2-con. While i \leq j: m \in [L(i+j)/2/2] \rightarrow check if AEm3 is the value (E) be are looking for, if AEm3 = E: where middle index of A.m \in [L(i+j)/2/2] \rightarrow check if AEm3 is the value (E) be are looking for, if AEm3 = E: where middle index of A.m \in [L(i+j)/2/2] \rightarrow check if AEm3 is the value E has middle index if the small, that n.m \in [L(i+j)/2/2] \rightarrow check if AEm3 is the value E has middle index of A.m \in [L(i+j)/2/2] \rightarrow if the value E has middle index if the small, that e is e if AEm3 is the index of A.m \in [L(i+j)/2/2] \rightarrow if the value E has middle index if the small, that F = A.m \in [L(i+j)/2/2] \rightarrow if F where F is F is the index F is F is F is F.e = 1$ has "subscript," if F is the index F is F is F . e = 1 has many "Reserve" of some index in iteration. f is the size D is the index in F is F is F . f is subscript, AE is F is F . f is F is F . f is the ends of the subscript, F is F is F . f is F . f is F . f is F is F . f is F	What is the goal ?	
What is the eigenithm? What is the eigenithm? ALG(A, ±): i,j = 1, n = Steel w/s pointer at the beginning & end, like in 2-com. While $i \leq j$: $m = \lfloor (i + j)/2 \rfloor$ decay if ALMO is the value (t) we are looking for, if ALMO = t: $m = \lfloor (i + j)/2 \rfloor$ decay if ALMO is the value (t) we are looking for, if ALMO = t: $m = \lfloor (i + j)/2 \rfloor$ decay if ALMO is the value (t) we are looking for, if ALMO = t: $m = \lfloor (i + j)/2 \rfloor$ decay if ALMO is the middle index if A. ether a = been middle index if A. $ether a = been middle index if the same (t) the same (t) if ALMO is the same), m = \lfloor i + m + 1 \rfloor for value of middle ind. is too by, returned that lefthall of the array.Why is this alg correct?\Rightarrow if always "Bessee" on some (barray ALi: j] . ACi ij] always withering t,and the bit of it shrinks in can iteration.What is the RT?\Rightarrow if always iterations of "subscrays" do array ALi: j] . ACi ij] always withering t,arat the bit of it shrinks in can iteration. \forall has t is the RT? \Rightarrow if subscray ACi ij] hei wight a case beginning of some iteration, and length fat the cod of the same iteration of the same iteration, then f \leq L/2 (since the array).\Rightarrow if subscray ACi ij hei wight a case beginning of some iteration, and length fat the cod of the sine field of new subscraps - (next local tarking) = 1i = j - \lfloor \frac{1+1}{2} \rfloor = \frac{j-\frac{1+1}{2}}{2} = \frac{1}{2}\Rightarrow if All all is j - \lfloor \frac{1+1}{2} \rfloor = \frac{j-\frac{1+1}{2}}{2} = \frac{1}{2}\Rightarrow if All is a to the is of the algo subscraps (D) bins.hows, er is Ologon)k = m startion of the algo as the of Olygon) iterations. hows, er is Ologon)k = thereations is j - \frac{1}{2} = \frac{1}{$		
$ \begin{array}{c} 1, j \equiv 1, n & \qquad \qquad$	What is the algorithm?	
While $i \notin j$: $m_{\pm} \lfloor \lfloor \lfloor i + \rfloor \rfloor / 2 \rfloor \rightarrow chacks if ALMJ is the value (b) he are looking for, if ALMJ = t: m_{\pm} \lfloor \lfloor l + \rfloor / 2 \rfloor \rightarrow chacks if ALMJ is the value (b) he are looking for, if ALMJ = t: m_{\pm} \lfloor \lfloor n + 1 \rfloor where m_{\pm} = m_{\pm} = m_{\pm} \lfloor n + m_{\pm} \rfloor where m_{\pm} = m_{\pm} = m_{\pm} \lfloor n + m_{\pm} \rfloor where m_{\pm} = m_{\pm} \lfloor n + m_{\pm} \rfloor where m_{\pm} = m_{\pm} \lfloor n + m_{\pm} \rfloor is the value g the middle index is too small, there is a m_{\pm} \rfloor is m_{\pm} \rfloor where m_{\pm} \equiv m_{\pm} \rfloor is m_{\pm} \lfloor n + m_{\pm} \rfloor is m_{\pm} \lfloor n + m_{\pm} \rfloor index where m_{\pm} \parallel m_{\pm} \rfloor is m_{\pm} \lfloor n + m_{\pm} \rfloor is m_{\pm} \lfloor n + m_{\pm} \rfloor is m_{\pm} \lfloor n + m_{\pm} \rfloor \rfloor.Why is this of a correct?\Rightarrow the durge "focuses" on some subarray" of eventies in the left here is the end of the sink of m_{\pm} \rfloor is m_{\pm} \lfloor n + m_{\pm} \rfloor.Where is the RT?\Rightarrow the durge "focuses" on some subarray have returne through?\Rightarrow the durge intervations of "subarray" do not resulting the army tech time,\Rightarrow the one of the same decoder m_{\pm} \rfloor \lfloor m_{\pm} \rfloor (since the are "making" the army tech time),\Rightarrow for easist the alg sets (m_{\pm} \parallel m_{\pm} m_{\pm} \rfloor - (m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \rfloor - (m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \rfloor - (m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \rfloor - (m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \rfloor - (m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \rfloor - (m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \rfloor - (m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \rfloor - (m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \parallel m_{\pm} \rfloor - (m_{\pm} \parallel m_{\pm} \parallel m$		i, j = 1, n · · · · start w/ a pointer at the beginning & end, like in 2-sum.
Why is this of a correct? $Why is this of a correct? Why is this of a correct in a $		
$if A [m] = b:$ $if vertice on the middle index of A.$ $if vertice found to prevent index m.$ $dif A [m] = c: m + 1$ $return m$ $if vertice equations is the middle index is too small, create a (com + 1) new "ubarray" of everything in the 'right half' of A (class: (l = pointer at stark index, which is now med.). (j = m - 1) if value B middle ind. is too big, preventees the left half of the array. Why is this alg correct? if H alway: "focuses" on some subarray A [i: j] . A [i: j] always contains to, and the site of it shrinks in cash iteration. What is the RT? if we many iterations of "subarray" dow recurse through? if subarray A [i: j] he is top he is the big inning of some iteration, and length l at the cod of the some theretion, then 2 \le l _2 (since we are "making" the array such time). if a [j [index of ind draw subarrays - (mex (new that ind for subarray)) + 1) i [j [index of ind draw subarrays - (mex (new that ind for subarray)) + 2) i [c A [i: j] initially has length a start of O(logn) iterations. O(1) \text{ per iteration} i [c A [i: j] hes a top in a constant of O(logn) iterations. More some O(1) \text{ per iteration} i [c A [i: j] hes a constant of O(logn) iterations. $		
$\frac{1}{2} = \int (index of new subscreaps of some iteration, the are "here in a first the arg of the solution of the argument of the solution of $		
$\begin{array}{c} (\text{if } A(\omega_1^2 < \underline{i} \longrightarrow 1 \text{ if } \text{the value } 2 the models index is the semil, (reate a is multiple in the 'right half' of A is multiple in the 'right half' of A is multiple in the 'right half' of A close: (1 = pointer at start index, which is new multiple is A close: (1 = pointer at start index, which is new multiple is A close is new multiple is the left held's the array. Why is this edge correct? > If always "focuses" on some subarray A (i: j] - A (i: j] cloways contains t, and the size of it shrinks in calm iteration. What is the RT? > How many iterations of "subarray 'to be recurrent mough? > If subarray A (i: j] has tength 2 as the tength of some iteration, and length 1' a the end of the size of "subarray iterations is are "halving" the array such time). > To result the alg sets (=multime given iteration in for subarray)) + 1 = j (index of the alg sets (=multime given iteration is for subarray)) + 1 = j - (index of the alg has a total of O(logn) iterations. * Therefore, the alg has a total of O(logn) iterations. * There is iteration requires O(1) time. * Thus, RT is O(log m) * Therefores o(1) time. * Thus, RT is O(log m) * therefores$		
$i = m + 1 \qquad new "subscray" of everything in the "pight half" of A else: (I = pointer at sheet index, which is now most). j = m - 1 \qquad) if value of middle ind. is too big , recurre on the left half of the array. Why is this as g correct? \Rightarrow It duray "focuses" on some isbarray A [i:j] . A [i:j] cluvers contains t, and the site of it shninks in cash iteration. What is the RT? \Rightarrow Ite owned iterations of "subscray" do ne recurre through? \Rightarrow Ite subscray A [i:j] her tength e cashe beginning of some iteration, and length l' at the aig sets (im + 1 in a given iteration, and length l' at the aig sets (im + 1 in a given iteration) : l' = j (index of end of new subscray) - (new that ind for subscray)) + 1 = j - Ling J = j - Ling $		
$\begin{array}{c} \text{clse:} \qquad (l = pointer at stort index, which is now back), \\ j = m - 1 \longrightarrow iP value & middle ind. is too big, recurree on the left half of the array. \\ \\ \text{Wing is this alg correct?} \qquad \Rightarrow It always "foculses" on some subarray A Liij]. A Liij] always contains t, and the site of it shninks in teach iteration. \\ \\ \\ \text{What is the RT?} \qquad \Rightarrow How many iterations of "subarray A Liij]. A Liij] cloways contains t, and the site of it shninks in teach iteration. \\ \\ \\ \text{What is the RT?} \qquad \Rightarrow How many iterations of "subarray a days are recurree through? \\ \\ \\ \Rightarrow If subarray A Liij] has length t as the beginning of some iteration, and length l' at the end of the some theration , then l' = l/2 (since we are "halving" the array teach time). \\ \\ \\ \\ \\ \\ \\ \end{array} $		
$\frac{1}{2} = n - 1 \qquad \qquad$		
$\begin{aligned} half of the array. \\ Why is this arguments of the array of the array. \\ Why is this arguments of the size of it shrinks in each iteration. \\ and the size of it shrinks in each iteration. \\ What is the RT? \rightarrow How many iterations of "substrays" do we recurse through?\rightarrow IF substray ALI: [] has length e at the teginning of some iteration, and length l^{1} at the code of the same iteration, then l^{1} \leq l/2 (since he are "holving" the array each time).\rightarrow IF or ea, if the arg sets (iteration iteration :l^{1} = j (index of and of new substrays - (max) (new that ind for substrays)) + 1= j - \lfloor \frac{l+1}{2} \rfloor = j - \frac{l+1}{2} + \frac{1}{2} = \frac{j-l+1}{2} + \frac{1}{2}\rightarrow IF AC: [] initially has length n, after a literations."Each iteration requires O(1) time."Thus, RT is O(log n)RT Notes \longrightarrowRT Notes + RT Notes + $		j=m-1) if value @ middle ind. is too big, recurse on the left
$RT Notes \longrightarrow RT Notes \longrightarrow RT is in a construction in the size of it shrinks in each iterations. P(1) = P(1)$		
$RT Notes \longrightarrow RT Notes \longrightarrow RT is in a constraint in a constraint in the state of the subscrapt is a constraint in the const$	Why is this alg correct?	> It always "focuses' on some subarray ALi: J] . ALi: j] always wortains t,
$ \rightarrow 16 \text{ subarray AC} : :j] has length l a the beginning of some iteration, and length lat the end of the same iteration, then l^2 \leq l/2 (since we are "halving" the array eachtime). \rightarrow 16 \text{ subarray } b \text{ the alg sets } i \text{ subarray} - (mer) linew iteration : l^2 = j (\text{index of end of new subarray}) - (mer) (\text{new iteration for subarray})) + 1 = j - \lfloor \frac{i+1}{2} \rfloor = j - \frac{i+1}{2} + \frac{1}{2} = \frac{j-i+1}{2} + \frac{1}{2} \rightarrow 16 \text{ AC}(i;j) \text{ initially have length } \underline{n}, after K \text{ iterations}, ALi:j] has length at most n/2 \times . \text{ Therefore, the alg has a total of O(logn) iterations.} \cdot \text{Each iteration requires O(1) time.} \cdot \text{Thus, RT is O(logn)} K M otes; - + M M (iterations: j-i = n \rightarrow \frac{n}{2} \rightarrow \frac{n}{2^2} \rightarrow \frac{n}{2^2} \rightarrow \dots \rightarrow 1$		
at the end of the same iteration, then $l^{2} \leq l/2$ (since we are "halving" the array each time). $Tor cs, if the alg sets i \equiv m+1 in a given iteration :l^{2} \equiv j (index of end of new subarray) - (m+1 (new storf ind for subarray)) + 1\equiv j - \lfloor \frac{i+1}{2} \rfloor \leq j - \frac{i+1}{2} + \frac{1}{2} = \frac{j-l+1}{2} = \frac{l}{2}T If A(::j) initially has length \underline{n}, after k iterations, A[i:j] has length at mostN/2^{k}. Therefore, the alg has a total of O(logn) iterations.Each iteration requires O(1) time.Thvs, RT$ is O(logn) RT Notes $N = \frac{1}{2}$ $N = \frac{1}{2}$ 	What is the RT?	+ How many iterations of "subacrays" do we recurse through?
time). $\neg \text{For } e_{j} \text{ if } \text{the alg sets } i \text{ imagiven iteration }:$ $i \uparrow z \text{ j (index of and of new subscray) - (ment (new start ind for subscray)) + 1 z = j - \lfloor \frac{i+1}{2} \rfloor = j - \frac{i+1}{2} + \frac{1}{2} = \frac{j-(i+1)}{2} + \frac{1}{2}\Rightarrow \text{ If } AC_{i}: j \text{ initially hat length } n_{j} \text{ ofter } k \text{ iterations, } A[i:j] \text{ hes length at most}n_{2} \times \dots \text{ ThereFore, the alg has a total of O(logn) iterations.}\vdots \text{ fach iteration requires } O(1) \text{ time.}\vdots \text{ This, } RT \text{ is } O(logn)RT Notesi + g \text{ iterations: } j - i = n \rightarrow \overline{2} \rightarrow \overline{2} \xrightarrow{n} \rightarrow 1k iterations$		→ If subarray AE:: j] has length 2 at the beginning of some iteration, and length 2
$ \begin{array}{c} \stackrel{\rightarrow}{\rightarrow} \text{ For es, if the alg sets } i = m + 1 \text{ in a given iteration }: \\ \begin{array}{c} 1 \\ = j (index uf end of new subservey) - (m + 1 (new start ind for subservey)) + 1 \\ \\ = j - \lfloor \frac{i+1}{2} \rfloor = j - \frac{i+j}{2} + \frac{1}{2} = \frac{j-l+1}{2} + \frac{l}{2} \\ \end{array} \\ \begin{array}{c} \stackrel{\rightarrow}{\rightarrow} \text{ If ACI: } j] \text{ initially has length } \underline{n}, after k \text{ iterations, AEI: } j] has length at most \\ \end{array} \\ \begin{array}{c} n/2 \\ n/2 \\$		at the end of the same iteration, then $l^2 \leq l/2$ (since we are "halving" the array each
$l^{1} = j (index e^{i} end o^{2} new subservey) - (n+1 (new start ind for subservey)) + 1$ $= j - \lfloor \frac{i+1}{2} \rfloor = j - \frac{i+1}{2} + \frac{1}{2} = \frac{j-l+1}{2} = \frac{l}{2}$ $\Rightarrow If A(i:j) initially had length n, after k iterations, A[i:j] has length at most N_{2} \times \text{. Therefore, the alg has atotal of O(logn) iterations.} \cdot \text{Each iteration requires O(1) time.} \cdot \text{Thus, RT is O(logn)} RT Notes \longrightarrow \left(\begin{array}{c} O(1) & per & iteration \\ \cdot & tg & iterations: \\ j-i = \\ \end{array} \right) \rightarrow \frac{1}{2} \rightarrow \frac{1}{2^{2}} \rightarrow \frac{1}{2^{2}} \rightarrow \frac{1}{2} $		time).
$= j - \lfloor \frac{i+j}{2} \rfloor = j - \frac{i+j}{2} + \frac{1}{2} = \frac{j-l+1}{2} = \frac{1}{2}$ $\Rightarrow \text{ If ACi: j] initially has length } \underline{n}, \text{ after } k \text{ iterations, ACi: j] has length at most}$ $\gamma_{2^{k}} \text{ Therefore, the alg has a total of O(logn) iterations.}$ $Cach \text{ iteration requires O(1) time.}$ $Privs, RT \text{ is O(logn)}$ $RT \text{ Notes} \qquad \qquad$		→ For ex, if the alg sets i=m+1 in a given iteration :
$ \begin{array}{c} \rightarrow \ \text{If ACi:} j \ \text{initially has length } \underline{n}, after \ \text{k iterations, ACi:} j \ \text{has length at most} \\ \hline n/2 \times & \text{Therefore, the alg has atotal of O(logn) iterations.} \\ \hline & \text{`Each iteration requires O(1) time.} \\ \hline & \text{`Thvs, RT is O(logn)} \\ \hline & \text{RT Notes} \\ \hline & \text{Votes} \\ \hline & \text{`Hig iterations: } j-i = \underbrace{n \rightarrow \frac{n}{2} \rightarrow \frac{n}{2^2} \rightarrow \frac{n}{2^2} \rightarrow \frac{1}{2}}_{\text{Kiterations}} \\ \hline & \text{Kiterations} \\ \hline \end{array} $		
$\frac{n_{2}}{2} \text{ Therefore, the alg has atotal of O(logn) iterations.}$ $\frac{(2 \times n)^{2} (2 $		$= j - \lfloor \frac{i+1}{2} \rfloor = j - \frac{i+1}{2} + \frac{1}{2} = \frac{j-i+1}{2} + \frac{1}{2}$
RT Notes \longrightarrow * tag iterations: $j-i = n \rightarrow \overline{2} \rightarrow \overline{2^2} \rightarrow 1$ * the iterations		→ If ACi: j] initially has length n, after k iterations, A[i: j] has length at most
$RT \text{ Notes} \longrightarrow \left(\begin{array}{c} 0(1) \text{ per iteration} \\ \cdot \text{ traditions: } j-i= n \rightarrow \frac{n}{2} \rightarrow \frac{n}{2^2} \rightarrow \frac{1}{2^2} \rightarrow \frac{1}{2} \rightarrow \frac{1}{$		n/2 K. Therefore, the alg has atotal of O(logn) iterations.
RTNotes \longrightarrow (01) per iteration $i \neq g$ iterations: $j-i = n \rightarrow \frac{n}{2} \rightarrow \frac{n}{2^2} \rightarrow \frac{n}{2^3} \rightarrow \dots \rightarrow 1$ (i) iterations		*Each iteration requires O(1) time.
Kilverghions: $j-i = \underbrace{n \rightarrow \frac{n}{2} \rightarrow \frac{n}{2^2} \rightarrow \frac{n}{2^2} \rightarrow \frac{1}{2^2}}_{k \ iterations}$		* Thus, R-T is Ollogn)
Kilverghions: $j-i = \underbrace{n \rightarrow \frac{n}{2} \rightarrow \frac{n}{2^2} \rightarrow \frac{n}{2^2} \rightarrow \frac{1}{2^2}}_{k \ iterations}$		
* i iterations: $j-i = 0 \rightarrow \overline{2} \rightarrow 22 \rightarrow 23 \rightarrow \dots \rightarrow 1$ K iterations	0 T Notos	O(1) per iteration
K iterations	CT NOTES	• # g iterations: $j-i=0 \rightarrow \frac{n}{2} \rightarrow \frac{n}{2^2} \rightarrow \frac{n}{2^2} \rightarrow \cdots \rightarrow 1$
$\frac{1}{2^{\nu}} \leq 1 \implies n \leq 2^{\nu} \implies K = \log_2(n)$		K iterations
		$2^{k} = 1 \Rightarrow n \le 2^{k} \Rightarrow K = \log_2(n)$

on Sort - (REMEMBER That in theory classes like this one, we say arread
instead of ars[0] an array w/ netements has indexes 1 -n (inclusive), NOT indexes 0 - (n-1))
-> An array A of a distinct (non-repeating), unsorted integers
- Sort the elements of A by increasing volve (e.g. A(2) < A(2) < A[n])
→ Ex: A = [7,2,1,4,3] GOALJANS: [1,2,3,4,7]
ALOCAD:
for i = 1; i ≤ n : The algorithm executes <u>n</u> rounds, one for each is[n]
For each round, we compare the rest of the values (after for j = (i+1); j = n = index i, hence j = i+1) to the wrest value at
index i, hence $j = i + 1$) to the write at if $ACj = ACm = i$.
m=j IF a value at an index >i is smaller than ACi3, it
$Swaa(A(L)ALM))/ \rightarrow$
needs to be moved Forward. Thus, we set $m = j$ to indicate which vel(ACm3) should be surepped with AEI
→ IDEA: Basically, in each iteration, find the smallest element in i through n.
Then, swap it with i. Then, increment i & do it again.
→ In round i, the alg excutes at most c(n-i) operations for some c EZ* (posint)
Summing over all i E [n], the total to of operations is at most:
$c \sum_{i=1}^{2} (n-i) = (-((n-i)+(n-2)++2+i) = 0(n^{2})$

<u> </u>	erge Sort -
What is the input?	-> An array A of n integers
Whet is the goal?	-> Sort the elements of A by increasing volve (e.g. A(2) < A(2) < A[n])
	→ Ex: A = E 2, 4, 8, 5, 1,7, 6, 3]
What is the algorithm?	→ IDEA : Split A into its 2 halves & recursively "marge sort" each half. then,
	merge the 2 halves using a 2-pointer approach.
	Merge Soct (A):
	if $n = 1$: return A
	K = []2]
	A = MorgeSort (AC1:K])
	AR = Merge Sort (AC(K+1):n])
	i, j, B = 1, 1, [empty list]
	while i < k and j < (n-k):
	$i \in A_{2} \subset A_{2} \subset J$:
	B. append (A_[i])
	i + = 1
	eise:
	B. append (Ap Cj])
	j+=1
	if isks
	append all num in Arci: (n-K)] to B
	else:
	append all num in ALEi: KJ to B
	return A = B. as _array ()
RT 7.	-> D(n logn)

(Array Algorithms) 1.1 Max in Array Input: Herang A uz n distinct, pos integers boal: Return the largers in in A English (1) ALG (argorithm) : aka Rython pseudocode 2 Correctness : latition pseudade Proof (Induction hypothesis) Pythan 3 Running Time (RT) assembly ALG (A): Larray indices start at 1 in this class' notation machine \odot for i=2,..., n: if ALCO>m: 7 m=max(m,A(i)) m=ALi) return m Orrectness: m is always max (Al 1= i)) 3 RT= 4 of primitive operations the ALS makes in the workt case What is a primitive operation? 2. assignment ops, e.g. M=3 2. comparison Le.g. "ip x >3) 3. arithmetic (y=x+3) 4 Indexing (m= #(2)) 5 causireturn

- Party much anything that can be done as 1 line of essembly vode, is a primitive operation.

1.5 Given y search (A, e) ^C sorred (This is 'on the 's)
(pat: Ration K s.t. A(K) = t (or nothing)
Bute Force: Scan A For T → O(n)
So: A = S. (3, 4, 7, 9, 11, 153) and t=8
1. Check if well & middle num in array is smaller than t
A = S. (3, 4, 7, 9, 11, 153)
i ''' not c.9
2. Then we can more pointer i the the englet g the middle num
→ Test middlie clement, the cryst g the top big or to
small, "Domin"/narrow down the 'subarray' accordingly
→ Birdang Search Mg (A, t):
i, j=1, n the englet g the injunct index in the energy
m (contiduce) = L((i + j)/2]
if A(m) = t: return m
uits A(m) > t:
j: n-1
Busing Time:
· O(1) for theration

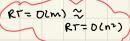
$$2^{n} = 1 \Rightarrow ne2^{n} \Rightarrow K = log_2(n)$$

1. 4: Selection Sort Goal Sort A Cire, we want ACIJC ACIJC... < A[n]) EX A = [7, 2, 1, 4, 3] (Goal: [1, 2, 3, 4, 7]) 1. Lets find the smallest element & put it in the correct spot (gneet available?) 2. swap 7 with 1 [1, 2, 7, 4, 3]3. swap 2 with 2 (1, 2, 7, 4, 3]3. swap 2 with 2 (1, 2, 7, 4, 3]4. swap 7 with 7 [1, 2, 3, 4, 7]4. swap 7 with 7 [1, 2, 3, 4, 7]4. swap 7 wi 7 [1, 2, 3, 4, 7]5. swap 2 with 7 [1, 2, 3, 4, 7]4. swap 7 wi 7 [1, 2, 3, 4, 7]5. swap 2 with 7 [1, 2, 3, 4, 7]4. swap 7 wi 7 [1, 2, 3, 4, 7]5. swap 7 wi 7 [1, 2, 3, 4, 7]6. swap 7 wi 7 [1, 2, 3, 4, 7]7. swap 7 wi 7 [1, 3, 3, 4, 7]7. swap 7 wi 7 [1, 3, 3, 4, 7]7. swap 7 wi 7 [1, 3, 3, 4, 7]7. swap 7 wi 7 [1, 3, 3, 4, 7]7. swap 7 wi 7 [1, 3, 4, 7]7. swap 7 wi 8 [1, 3, 4, 7]7. swap 7 wi 8 [1, 3, 4]7. swap 8 [1,

ALGLA): For i = 2,..., n: m= i

m = i $F_{Dr} j = i + 1, \dots, n :$ m = index q if ACj J < A(mJ); m = j m = j

Running Time: similar to Brue Force (BT) of Two-Sum n iterations, each takes D(n) time - ANS: D(n2)


Lor OLA-i) but same thing)

Insertion Sort: DLn?) worst Lase, DLn) if A is sorted

1.5 • Marge Sort Eas

$$-1$$
 of 2 vertices eigenthing we will study other is DES
Ex: A = Co. 4, 8, 8, 2, 2, 7, 6, 3
Co. 1, 2
 $C_{1,2}$ and $C_{2,3}$ ($C_{1,3}$ ($C_{1,3}$) and halos sorted
 $C_{1,2}$ and $C_{2,3}$ ($C_{1,3}$ ($C_{1,3}$) and halos sorted
 $C_{1,2}$ and halo call array and taking at the smaller value?
 $C_{1,2}$
 T drange takes 0(n) time.
But ($C_{2,3}$ ($C_{2,3}$ ($C_{2,3}$) and the smaller value?
 T drange takes 0(n) time.
But ($C_{2,3}$) and the call array and taking at the smaller value?
 T drange takes 0(n) time.
But ($C_{2,3}$) and $C_{2,3}$ array create in original
 $A_{-} = A_{-} B_{-} C_{-} C_{$

Ch.2: Esser	tial Graph Algorithms	
Nodirected grad	n: vertice Directed	graphing 2 2
	Hial Graph Algorithms n: protected Directed	Juchi 120
		d < d C
	• We ign	ore repeat & parallel same-his edges
-> To convert un	directed to directed, just draw 2 edg	er in both directions, for every eeloge on the
undirected grap		
-> G (V,E) whe	re V= set of vertices n=1v1 and E = set of ed	ges M=IEI
Ū~,	V-5,	
A A	Y= {1,2,3} E= {(1,2),(1,3),(3,2)}	What is largest possible volve of <u>m</u> ? (m=edges, v=vertices)(for a directed graph)
		n maxm
In Programmin	$\begin{array}{c} \underline{\mathbf{g}}, \underline{\mathbf{representing}} & \underline{\mathbf{graphs}} \\ \underline{\mathbf{representution}} & \underline{\mathbf{EX}}, \underline{\mathbf{f}} \\ \underline{3} \\ \underline{9} \end{array}$	1 0 0
2. adjacency list	representation EX 1 1	2 2 000
· an acray	$3 \rightarrow 4$	3 6 500
	og 2's "out-neighbors" (2 and 4) ug 2's "out-neighbors" (non+)	tota: nin-1) 7
		total: nin-1) Z=D(n2) • For undirected graph: 10-1)
	3, 63, 61, 43, 620)	
	in Ocn) time, index in OL2) time, & curit ap	
	reate AND append to either end in D(1) time	
-> Adjacency List	is technically an array of pointers to lists. T	his isn't important though. "Array of lists"
2. Adjacency Mat		Éx:
	$G = G(1)$ $C \rightarrow 1, 1, 0, 0$	
	617) (0,0,0,0)	$\begin{array}{c} 0 \\ \uparrow \\ 3 \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \uparrow \\ 0 \\ \hline \end{array} \\ \end{array}$
	G(3) E1, 0,0,17	
	G(4) [0,1,0,0]	
Pros and Long o	F East:	
	adj. list	adj. matrix
Space:	0(m+n)	O(n²)
Time :	DLn2)	Dlnz)

Adjuency List Algs	A djauncy Matrix Algs
is_edge (G, U, V):	is_edge (Gyuyy):] and hime since we can
For w in GLU): O(out-derectur)?	U(L) Time since
······································	
CELINO TO U	return True Scan the entire D.S. (Like you would w/ a list)
= length of blus	return False
return Falsa	

print_out_neighbors(6,v);]	D (out-degree(u)) print-out-neighbors (6, v):	TIME:
For v in GLUD:	alca len(Glus) for v in Glus:	O(n) 7 belause we
print (v)	print (v)	bave to scan over Os as
		well as 15

- TAKEAWAY:

· We use adjacency lists by default, especially when you have to do a lot of printing

2.1 Breadth - First Search (BFS) G = directed graph and S= verter in G that is the "start" /"source" ->Input: (G, S) where $\rightarrow E \times :$ $(2), 0 \rightarrow (2), (2) \rightarrow (3)$ $(3), 0 \rightarrow (3) \rightarrow (3)$ (4), -(5)→ GOAL: Return an array d s.t. Yu EV, dlu) = distance from 5 to u in G · Ake, length of shortest path Sequence (list) of → ANS: & = [0, 1, 2, 1, 3] Jaka to & edges in the path vertices that follows edges the "shortest length" of this path = 2 (if path & has K vertices, set the out neighbors bain to be 2 1601 b)= K - T) Intrition : BES 2 dropping Water on a table Lprocesses V in layers) → What is a queue ? → Lan add to the back & remore from the front in DLI) time -> (Scample from above) ... initially set the value of each edge = 00. As you traverse, change the values. [2,4] [4,3] [5]... don't change anything by this point. 200 G-33 - Once greve is empty, you're done - ALG(6,5): $d = [\infty] * n, d[S] = 0$ Q = quere (S) iterations... each time OLout-degree (u)) time while | Q | 21: · D(out-degru)) <m ... so you could say RT = D(m2) but that's not the best estimate u = dequerre from Q For v in GLW) : - I DOK at U's ow-neighbors & change "process "u if & [v]=00: their vols if they are 00 Section d C V J = d C u J + 1419 add v to Q return D - Running Time: Olm + n) ?????? adding -p out-dogs is busically & counting ns · I iterations of the while loop (see orange notes) • RT = Out-deg (S) + Out-deg (S's first out-neigh) = out-deg (S's 2nd neighbor) + ... = $\leq 0.1-deg(n) = M$... RT=O(M+N) RT = · (reating & takes D(n) time. The rest of the alg is D(m) time. Thus, D(m+n).

Ch.2: Essential	Graph Algorithms
	n- First Search -
What is the input?	\rightarrow (6, s), where G is a directed graph and s EV (s is a vertice).
What is the goal ?	-> Return an array & s.t. for all v ev (all vertices), d[v] is the
,	distance from s to v.
What is "distance"	-> The shortest amount of edges that you have to "walk along" to get from
defined as?	node S to node v.
	- a.k.a, the # of edges in the 'shortest path'
	· If parts p has k vertices, len up) = k - 1
Example graph?	Graph G:
	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & $
How is a graph represented	-> As an adjourney list - see pgs 13-14
for function input?	G=[[2,4],[3], [4,5], [], [2,4]]
What is the BFS Alg?	-> See notes on prev page for more details.
	- INTUITION : Start at node S & work through the graph in "layers" ; visit
	s' out- neighbors , the out-moors of those vertices , & so on .
	-> Implementation:
	$d = E \infty \Im * n$, $d E S \Im = D = 2$. create a queve Q with initially just S in it.
	Q = queve (S) 2 set d[s]= 0
	while Q ≥ 1. 3. While Q is not empty, dequeve (axa, take
	? U = dequerre from Q I the exement/vervice which has been in Q For
	I FUT V IN GLW): the LONGEST; FIFD) a vortex & from Q and
	1 IF JEV J=00: "Process it."
	d EVJ= d EuJ+1 Process vertex ":
	add v to Q 2) loop + Nrough each out - neighbor v of u and check ; F
	return D v has been encountered before (if d for vertice $v = \infty$,
	that means it has not been touched since d was created).
	2) If v hasn't been encountered, add v to the end of Q.
	13) IF v was added to Q, see d[v] = d[v] + 1

- Depth - Fi	rst Search -
What is the idea behind	-> BFS is like water sprending across the surface of a table.
DFsi	-> DES is like running down a maze & leaving a trail of breadcrumbs
	· Traversing down a graph ; whenever we reach a fork in the road,
	we piece a direction & continue till we get stuck at which point
	we backtrack along the brenderunds letry another direction
What is the input & goal?	→ Input : A directed graph 6, for ex: [[2,4], [3,4], [5,6], [3,5], [3,5]
	+ Goal: Return 2 arrays, prel] and post[]. For a node u in G,
	pre [4] = Lime we start exploring 4 2,111 3,8
	PDS+[u] = time we stop exploring u 1,12 (2)
Example of how DFS works?	-> Let t = 1 = starting time.
	1. Starten at u = 1, pre[1]=1; t=t+1=2 3(4) - (5,1)
	2. Then we moved to u=2, pre (23=t=2; t+=1)
	³ moved to $u = 3$, pre [3] = t = 3 ; t + = 1 ⁴ .
	"moved to us 5 pre [5] = $t = 4$; $t + z = 1$
	"Nowhere to go from node u=5. So we can write the post val:
	post CSJ = t = 5 Backtrack to 3, which is where 5 came from.
	". More to u= 6, pre[b]=t= 6 ; t+= 1
	Only place to go from 6 is 5, but 5 has air been explored. Therefore, "Stuck"
	at 6 so we can write the post value: post [0] = t = 7; t+=1
	9. Bucktrack to 3, nonhere else to go, so write a post value; post[3]=t=8;t+=1
	10. Becktroux to Z, which is where 3 came from
	11. More to u=4 (unexplored), pre[4]=t=9; t+=1
	12. Stuck at 4 be 3 and 5 air explored, so post[4]=t=10; t == 1
	13. Backtrack to 2, nowner else to go, with the post value. Post [2] = t=11; t+=1
	14. Backtack to I, nowhere else to go, write the post vene: post(1)=t=12; t+=1
	→ ANS: pre = [1,2,3,9,4,6]
	post = [12,11,2,0] (8,11,2)
What are the types of edges	→ DFS Tree edges : the edges that the "rat" actually ran across . Edges that were
that we can label when doing	crossed to reach not-yet- explored vertices, highlighted pink in \$x above.
a DES?	The union of these edges is called the DES Tree. From EX above:

What are the types of edges	→ Forward edges: all edges (u, v) s.t. there is a path from u to v in T.
that we can laber when doing	
a DFS?	→ Backward edges : all edges (u,v) st. there DES Tree T from EX1
	is a party from <u>v to u</u> in T.
	- Cross edges : all edges (4, v) which are not tree, forward, or back edges.
Visual of the Graph From EX1	2,11 3,8 = tree 1,12 2 3 = Forward
with all edges labeled ?	
What is the algorithm for	-> The "DFS" Function is actually just a wimpper for the Explore function,
DFS1	which actually does the "steps" described on prev. page.
	Explore (G, u): where u: index of a vertice in graph G
	pre [u]=t for every out neighbor of vertice u t += 2
	for v in GEUZ: DES (G):
	if pre [v] == 00: pre, post= [0] * n
	$E \times plore(G, v) \qquad t = 1 \qquad s''v''?$
	post Cu3 = t for u in V:
	$t + = t$ if pre $[u] = = \infty$:
	DES() relies on Explore () Explore (G, V) For the logic.
	return pre, post
Wait, is the "DFS tree" always	→ No; it can have multiple separate root vertices , kind of a "DFS Forest".
conneured?	Each time suplace() is called from DFS() - not recursively - there is a new
	"tree" in the DES Forest.
What is the Running Time	-> Similar to BES, it starts as Olm+n):
ur DFS?	> A single call of Explore (5,11) runs in GLu] steps cg, in one call, it runs
	for each of u's out-neighbors (ble of line 4).
	· One call of Explore is len (GEUS) time, also out-deg(u) time.
	→ Since every vertex will be explored once , and a graph G has n vertexes ,
	and "exploring" euch vertex taxes out-deg (u) time, the total KT is
	O(m+n), where m= # of edges.
15 Olmon) linear time?	→ Nect Because if the input is size K, then anything that is OLK) is lincar time.
	-> Think above the input if it were a simple 1D array of a elements , then anything
	running in OCm time would be linear. But here , our input is an adjacency list
	of length Mtrn. Input G has n lists. The even of the circus of each list is m.

	→ Running Time depends on the input. Whenever the RT 2 the input size,
	it is linear time.
	- Forex, O(n2) would be "linear time" for an adjalony matrix, since
	adj. matrices are of size n×n.
<u> </u>	Finding -
What is the cycle-Finding	→ A problem that applies DFS. Again, the input is a directed graph G
problem?	- Goas: Return a <u>directed cycle</u> in G - or, if none exists, then nothing.
What is a cycle in a	→ A "subgraph" or set of edges & vertices that is a sequence of adjacent
directed graph?	& distinct nodes; e.g., the 1st & last vertices in the path are the
	same, But no other vertice is repeated.
	Same, Gut no other vertice is repeated.
Why does DFS help us	-> R Ccall the types of edges in a Graph being crainated on DES:
solve Cycle - Finding?	= tree ; traverset during alle
	C C C C C C C C C C C C C C
	where 3 a path from u to v in the DFS the.
	= back-ward : edges between nodes (v, u) S.L." = cross : all other edges
	-> Notice that the back-edge in the above graph is what connects the tree
	edges to form a cycle? (2) -33 a back edge from y 11-5 2
	edges to form a cycle? (2) -33 a back edge from v, u = 5, 2 b tree-edges showing that v= 5 5 2 have added from u=2
	3 Low added & I have added Always Form a while
What is the algorithm for	→ 3 tree edges & I back edge always form a cycle.
Cycle - Finding ?	→ Intrition:
<u> </u>	· Run DFS on the graph to obtain pre- & post- values as well as a
	DFS Tree T.
	· If there exists a back-eage (u, v), then we know that I a path
	P in T that goes from v to u. The path + the back edge forms a cycle
	· Return P+ Lusv) as a cycle in G
	Find- Cycle (G): 7 Y is the literal "array" of vertices
	DFS (G) (rather than "6" which is the graph)
	T = DES Tree O" if pre[v] 2 pre[u] 4 post[u]
	for u in V: <pre></pre>
	for vin GEUJ:
	if Lu, v) is a back-edge:
	$P = the v \rightarrow u perto in T$
	return P + (u, v)

What is the RT uz	-> Unecking for a back-edge is D(1)
Cycle - Finding?	→ Running DFS & Lonstructing T is O(m+n)
J	$\rightarrow \mathbf{k} \mathbf{T} : \mathbb{O}(\mathbf{m} \mathbf{k} \mathbf{n})$
-Topologi	a) Ordening_
What is the input and goal?	> Input: A Directed Acyclic Graph (DAG) G.
	-> boat : Return a list R that contains a topological ordering of the nodes
	in G.
What is a D.A.6?	-> A graph with no cycles we can check whether topological ordering can
	be applied to a given dir. graph & by First running Find_cycle() on it!
What is a topological ordering?	-> an ordering of all nodes in V s.t. every edge goes from left to right.
6 0	- tormally: An ordering R of V s.t. for all (u,v) EE (all edges),
	u appears before v in R.
	· basicully, a listing of the nodes Vo, V, EV where every node only
	appears in the list AFTER all the nodes pointing to it have appeared.
	-> There can be multiple topo-sorts for a graph.
Example?	R = [5, 4, 2, 3, 1, 0]
	G= OK
	$G = \begin{bmatrix} C \\ C$
	• The first element will be a node that has no edges pointing at it (like 4 or 5)
	· Notice that 0 can't come in the list until 4 & 5 okready have.
What is another way to think	→ IF you draw the nodes in R in order from L to R, and then add the edges,
of topo sort ?	all edges should be following the flow of left - to -right. For ex:
	$0, (3, 0) \xrightarrow{(3, 0)} 0$
What is the intuition behind	-> Intuition: run DFS on the graph to obtain post_3 values, and sort
the Topo-Sort algorithm?	the nodes by decreasing post value
	$ \begin{array}{c} 0 \xrightarrow{2} \\ 0 $
	R = [1, 2, 4, 3]
	3,4 5,6 4

Post= 8 Post=7 Post=6 Post=4

What is the algorithm for	→ To save some running time, we can slightly modify DFS s.t. we create the
Topo-Sort?	Final ordering R as we traverse - rather than running DFS & then sorting
	PD5+C3.
How do we "modicy" DFS	→ Everytime we set a node "'s post-val (in the Explore() helper function), we
for this purpose?	should then add a line of Lode to "add u to front of R".
	"Why? ble exceptione we set a post-val for a node, that is (by nature),
	the biggest post-val so far. So we can thus add them to the Front
	0 6 .
	Explore - for - Topo-Sort (6, u): DES (6):
	precuzet; t+= 2 /* same implamentation; see notes
	for v in GEUJ: on DES*1
	if pre(vj= to : Topo_Sort(G):
	Suplore (G,V) R = Europhy list]
	post CNJ=t; t+= 2 DFS(G)
	Append u to Front of R Peturn R
What is the RT of Topon	-> Topo-Soit alg = DES alg with one extra line appending to a list (R).
Sort?	This only takes 0(1) time.
	> Thus, R.T. of Topo Sort = R.T. of DES : O(M+n)
- Strongly Ce	onnected Components -
What does it mean for a graph	-> A directed graph where there is a directed path between every pair of vertices;
to be strongly connected?	every node can be reached from every other node.
	· For all u, r EV, 3 a path From u tor AND v to u.
Example ?	-> Any cycle will be strongly connected.
	→ A Strongly Lonnected graph &: 1 → 2 → 3
	- Not strongly connected: 0-3 - 3 Why? there's no path from 3 to 1.
What is a strongly connected	- A "subgraph" of a graph G - axa, a subset of vertices - that is
component ?	
	→ A subsch of vertices that all have paths to & from one another.
Francis C. C.C. 7	
Example of an SCC?	G= 0 2 3 G is <u>not</u> a strongly connected graph, but
	(), C1,2], [3,5,6], and [4] are SC(s.
Do all graphs have SCCs?	Thetrally, yes. Every directed graph can be partitioned into its strongly
	connected components
	· Even if the SCC subsets have length I, like [4] from the exabove.

What is the problem	> Input: directed graph b
statement for SCC?	→ Goal: return an array c s.t. for all u, v t V, u and v are in the
	same SLC if and only if CCUJ=CCVJ
	· aka, for every SCC, all members of the SCC are "labeled"
	with the same "SCC number".
	$\rightarrow E \times \square$ $2 \times \square$ $3 \times \square$ $ANS C = [2, 2, 3, 1, 3, 3]$ $1 \times \square$ $nodew 1 \times \square$ $2 \text{ are an } SS \times Are \text{ an } Sci$
	nodes 1 8 Nodes 3,5, b
	2 are an SSS are an SCC
What is the algorithm?	
5	2. GR = reverse of G
	2. pre, post = DFS (GR)
	$c = C \infty 2 \pm n$
	K=1
	3. for u EV in decreasing order of post[u];
	iF c C u D = O :
	BFS (G, u) K represente the SCC
	K += 1 - Provide Solution - Prov
	4. set C[V]=K for all v reached from u and if C[v]== 00
	return c
	1. Construct the reverse graph of G, GR, by reversing every edge in G
	(flip the arrows, e.g. (u,v) EE(G) becomes (v,u) EE(G*))
	Implementation : GE = [CJ] * n 11 graph with a vertice & D edges
	(Linear time) For u in V (G): Il for each vertex in og graph,
	for V in G[N]: II DOK at its out neighbors
	add u to GR [v] llada screne cage to GR
	2. Run DES(GR) to get the post values for every u EV.
	3. For each vertice UEV (in order of decreasing post[U]), run BFS(G, S)
	with a "wrapper", to find the vertices reachable from u in G.
	· BESL) with a wrapper : meaning , only run BESL) on a vertex if it
	hasn't already been discovered in a previous BFSL) call.
	When running OFS(G,s), ignore any node outneighbor & if c[x] != 00
	4. Whenever we have to restart BES (iterations of step 3's For-loop), that
	represents a new SCC. laber all nodee explored in that cell with "see
	number " K (and then increment K).

Example of running	-> Lets use the graph from the earlier example of SCCs.
SCCCGJ?	$c = [a, \infty, \infty, \infty, \infty, \infty]$
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
	$1 \qquad \uparrow \qquad \downarrow \qquad \rightarrow \qquad \downarrow^{P} = \uparrow \qquad \uparrow \qquad \uparrow$
	$ \begin{array}{c} \bullet \\ \bullet $
	(1) + (1) + (3) + (1)
	$1 \qquad (For G^{-})$
	N,12 4,1 5, 4
	3. Run BFS (G, S= node W/ highest post value) BFS(G, H)
	$ \overset{\bullet}{\bullet} \leftarrow \overset{\bullet}{\bullet} \leftarrow \overset{\bullet}{\bullet} \bullet $
	• BFS(G,4) returns d= Eo, o, o, 1, o, O] ble node 4 has no out-neighbors
	4. $c = [\alpha, \alpha, \alpha, 1, \alpha, \alpha]; k = 2$
	5. Run BFS (G, s= node w1 second highest post value) BFS (G, 1)
Note: "ignoving" nodes in	· ignore node 4 because c[4] != 00
BFS would actually be implemented	$0^{\circ} \stackrel{(1)}{\longleftarrow} \stackrel{(2)}{\longleftarrow} \stackrel{(3)}{\longrightarrow} \stackrel{(3)}{\longrightarrow$
as not ignoring them, but instead ,	
only adding nodes from & to	(), - (5) (6) We set C[U] = K for all the nodes
, mun : n 4 ite .	b. $c = [2, 2, \infty, 1, \infty, \infty]$; $K = 3^{-3}$ explored by the BFS call in this (are, BFS(G, 1), which only explored nodes (are, BFS(G, 1), which only explored nodes)
	(are, BESCG, 1), in a contract of the since 1 and 2
6) d Cu3 = = 00	7. DON'T run BFS (G, S= node w/ next highest post value) bic next-highest
	post-val is node 2, but C[2] != a it all belongs to a group
	8. Run BES (G, S= node W next highest post value) BES (G, 3)
	$0 \xrightarrow{2} 0 \xrightarrow{2} 0 \xrightarrow{3} $
	excluding explored nodes (green boxes) it is basically
	$\textcircled{1}_{3} \leftarrow (5)_{2} \leftarrow (6)_{1} \land \land$
	c=[2,2,3,1,3,3];k=4
	^{10.} Done!

What is the RT of	-> constructing GR and running DFS (For post vals) : D (mon) time
scc?	-> Run BFS from one vertex is for each SCC Laka a total of at mist
	in times) but the ami. of vartexes it has to process decreases so
	- Total RT: OLMEN)

- Applications -

What is an application of	→ Say you are constructing the course structure for the CS major at a university.
Cycle-Finding?	You decide what classes are required to take other classes; what classes
	Must be taken in sequence, etc.
	(edge U, v indicates 110 - 210 30 / 21)
	(edge U, v indicates (10) (210 (30)) that course U is a prerequisite for course v) (283 (21)
	" Once you've made your list/structure, use eyele-Finding alg to make sure that
	there isn't a "loop" of classes that depend on each other as prerequisites,
	meaning that none of them can be taken. For ex:
	$(10) \rightarrow (20) \rightarrow (21)$
	(233)

What is an application of	→ As a Student : Use Topo Sort to, given the CS major course structure, figure	
Topo Sort?	out a possible order in which you should take all the classes!	

Ch 3: Greedy Algor	<u>iithms</u>
What is a greedy	→ An algorithm that iteratively constructs a solution ("one piece at a time")
algorithm?	by , in each iteration, choosing the option that appears the most optimal
5	right them, without Lonsidering how current decisions affect future
	options.
	-> Thinking short-term; best option at each moment
	- Greedy algorithms typically don't work
- 3.1: Mini	mum Spanning Tree -
What is a "Tree" 1	
	→ A special type of graph or "subgraph" of a graph G=(V,E) → T=(V,F)
	• V(T) = V(G): a tree has the same set of vertices as the graph.
	• FLT) <= E(G) : a tree 's edges are some subset of the edges of the grap
hillion is a specie ton ?	
What is a spanning tree ?	→ A tree T of some graph G that has the same properties as above, but is
	also concered.
Example?	> For this problem, we will consider undirected rather than directed graphs.
	G = possible spanning trees: O D D
What is the problem statement	→Input: An undirected, connected graph G, where each edge has a distinct
For MST ?	"weight" w(e) & Z assigned to it, for ex: 1 2 weight" of 1 2 edge (2.4)
	1 2 edge (2,4)
How do we represent this input	→ Goal: Return a Minimum spanning Tree of G.
	→ A list of n lists of arrays of size 2, where n= H of nodes → Eatherterment of the list for represents a set to an industry (as f(u)) is
in code?	→ Eachelement of the list G represents a nodes out neighbors (e.g. G[u] is
	the rise for node w)
	in is comprised of a "tople" (or array of size 2) for each one of its out-
	peignbors, where GEU(1]] = the out-neignbor vertex v, and
Г., , , , , , , , , , , , , , , , , , ,	GCuC2]] = the weight of the edge between u and v.
Example?	→ So the ex graph above would look like this:
	G=[[[2,3],[3,7]], mode I has an our neighbor 2, with
	2 (1, 3), (3) (2), (1) (2), (3) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
	[[[', 7], [2, 1], [4, 4]], [[[2,2], [3, 4]]]
	1, [[2,2]], [3,4]] node 3:
	· out-n 1 w w w = 7
	· w/ ~ 2 w/ w/e)=1

What is a Minimum Spanning Tree?	→ A spanning tree of a graph G s.t. the sum of the weights of all edges
	in T is minimized.
	e.g., pick the subset of edges that allows T to be connected at the minimum
C	neight possible.
Example?	+ From ex on prev page: (2)
	$\rightarrow From \text{ ex on prev page:} 1 3 2 1 3 2 G = 1 2 MST = 1 2 G = 1 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 4 3 4$
What does MST return	→ Instead of explicitly returning a tree T in adjacency list formal, we can
(in lode) ?	just return a list F of edges, e.g. MST(G) = $((1,2),(2,4),(2,3))$
	edge from () to ()
Can a graph have multiple MSTs?	
	→ No , under our assumption that every edge-weight is distinct (unique)
What is Prim's Algorithm?	-> One of 3 algorithms for solving the MST problem . "Building a cut".
	Ex: G = 0 2 2
whet is the idea behind	3 4 5
it, with an example?	
	-> Intuition: "Start at any vertex V and add it to your "bubble".
	2) To "connect it" to the "outside world" Leest of the graph), select the
	edge (connected to v) with the lightest weight and add it to "bubble."
	Add the associated vertex on other side to the bubble.
	5 3 ' edge (1,2). added 2 to "bubble."
	3),
	3) Continue this process : The vertex v just added becomes the one you're focused on.
Continue steps	· pick the lightest edge weight that "leaves the bubble"; e.g., that leads to
2 and 4 Until au	a vertex thats not in the bubble.
nodes have been added to bubble	• Added cdge (2,4). Added vertex 4. The lightest edge from 4 is
added to sta	5 3 (4,1), but I is all in the bubble, so we add (4,3). Added
	verter 3
	4) When there are no edges leading outside the bubble, "backtrack" to the previous node
	and check if there are edges leaving the Lubble.
	• Nowhere to go from vertex 3, so backtrack to vertex 4. add (4,5)
	5 3 and vertex 5.
	· Dous i

What is a cut ?	\rightarrow A cut S is a subset of vertices in G.
	\rightarrow An edge crosses a cut S if it has exactly 1 endpoint in S.
	\rightarrow th S= {1, 2} \rightarrow edges that cross
What is the actual algorithm?	→ "Build a cut" S S islike the "bubble" described on prev page.
1	Prim (G)
	S= { 1 } - begin with node 1 in the "bubble "
	F = [compty list] Find the lightest edge of all the edges where enactly I
	for i=1,, n-1; endpoint of the edge is an element of S.
	e = lightest edge crossing S - In real code, this line would actually be a for-loop
	leg, to each cage : check if it crosses S. it it does,
	add v to S; add e to F y Dirce you Find e, add the endpoint of e that ISN'T in S, return F add the edge to Final answer list of edges.
But how would we actually implement	
the "sex" \$?	• an "empty set" S= Ø ≈ S= [D] * n; an array of all Ds; one for each node.
	• "add u to s " 2 S[u]=1
Why does the loop run n-2	• "remove $u \text{ from } S$ " $\Im S[u] = 0$
iterations?	→ To connect n vertices, where n = \$ of nodes in G, you need n-1 edges. Therefores the tree T ceturged by MST will always here not edges ble need at mist
	Therefore, the tree T returned by MST will always have n-1 edges. We need at most
	n-1 iterations to get this.
	→ Alternatively, you could replace the while loop with "while ISI < n"; aka, while
	the cut S doesn't contain all the nodes.
How would we implement the for-loop	
to find e?	for v in GEU3:
	if S[u] = 1 and S[v]=0 (or S[v]=0 and S[u]=1??):
What is the Cut Property !	→ For every cut S in G, the lightest-weight edge crossing S is in the MST of G.
	\rightarrow Proof: assume for contradiction that $\exists a \ cut S \ s.t.$ the lightest edge \underline{e}_1
	crossing S is not in the MST T For 6.
	" if we were to add edge ez to T, it would become a cycle - meaning that
	it would no longer have the minimum amount of edges needed.
	· To "Fix" this, it would logically make sense to remove one edge and why

would be remove e if we can remove a heavier one ?

- Proof isn't rilly complete ... see notes/video for explanation.

Why is Prim's alg correct?	→ In each iter. of Prim's, we add the lightest edge crossing S, to F. By the Cut
	Property, this edge is in the MST T so F is always a subset of T.
	> Since the alg. terminates when F has n-1 edges, and any spanning tree has
	exactly n-1 edges, it returns the MST of G.
What is the R.T. of Prim's	-> Creating the binary array S, and list F, taxes OLD time.
algoritum?	\rightarrow The loop runs for at most $n-1$ iterations
	→ finding e (the lightest edge crossing §) will take O(m) time (scan every
	edge and kieptrack of the lightest I that cossee 5)
	→ The rest of the stuff in the loop is O(1) time.
	- Therefore, the RT of each iteration is DLM), and there are a total of
	n-1 &n iterations. So the total RT is O(mn)-time.
- Krueka	(O(mn) is better than O(m²), so O(mn) ≈ D(m²)).
	N's Algorithm -
What is Kruskal's algorithm?	→ Another way to implement MST that doesn't focus on building a bubble, but
	instead on sorting the edges by weight.
How does it work?	-> Intuition: "Pick" the edges in order of increasing weight, but don't create a cycle.
	→ Algorithm: Sort E by increasing weight. For each edge e in this order,
	add e to a list of edges F (initially empty), if Fre is acyclic
	(e.g. if udding edge e doesn't create a cycle in F). Return F.
Example?	
	$3 \overset{\circ}{\overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}{\overset{\circ}}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset$
	$ \begin{array}{c} \rightarrow \\ 3 \\ 3 \\ \hline \\ 3 \\ \hline \\ 3 \\ \hline \\ 9 \\ \hline 9 \\ $
	• We add edges (4,5), (1,2), and (1,3) to F because they have the 3 lightest weights.
	• The next lightest weight is edge (2,3) but since adding this to F
	(F= blue highlight edges) would create a cycle, we don't add it.
	F = [(1, 2), (1, 3), (1, 4), (4, 5)]
What is the algorithm?	Kruskal (G): "F+e" is a list of edges. We can run
	put edges in an array E DFS (G,=(V(G),F+e) to sheck whether its acyclic by seeing
	Sort E by increasing weight if "62" has back edges. DFS works for undirection graphes.
	F = [] 'You could also do this check with BFS: run BFS on
	For e in E: F with s= either endpoint (e, e,) in e. IF BFS
	if $F + e$ is a cyclic: $d = returns d [e,] (if s > e_o) = \infty$, that means that e, and
	adde to F e are currently not connected at all, and therefore adding
	return F e to Fwon't create a cylle.

What is the R.T. For	→ creating & surring list of edges: O(m logm)
Kruskal's ?	→ m iterations of the "for e in E" loop (once for each edge)
	→ Checking if F+e is acyclic (DFS or BFS): D(m+n)
	→ Total RT : D(m logm) + m. D(m+n) = D(m2)
Why is Kruskal's correct ?	
	→ because of the (ut Property (see textbook pg 16) urse Delete -
What is the Cycle property?	→ For any cycle C in G, the heaviest edge in C is not in the MST of G.
Proof?	- Assume For contradiction that I a cycle C whose heaviest edge f is in the
	MST T of G (highlighted = MST)
	→ Removing f From MST T creates a cut (removing any edge from a tree breaks
	it up into 2 parts alea 2 cuts)
	→ Since there is a cycle from one endpoint of f to the other endpoint, there will be another
	edge e, in the same cycle (that crossee the cut:
	→ f is the heaviest edge, so Wleo) < W(F)
	→ Therefore, replacing edge f with edge eo in the MST
	would improve it (meaning Twas never a valid MST in e b
	the first place)
What is Reverse-Delete?	- the 3rd way to implement MST . Sort of a "backwards Knuskal's"
How does it work?	-> Idea : Sort E by decreasing weight. For each edge e in this ordering of
	E, remove a from G if G-a (G without edge a) is connected. Return G.
	· Basically, we start will the og graph & and remove edges, starting with the
	heaviest one and working down (by order of decreasing weight)
	· Every time we want to remove a heavy edge, we first check whether the
	graph G woold still be connected without it.
	If it would, then we can remove the edge. If not, we can't.
helpolic has all this ?	At the end, we return what is left of G. This is the MST of G.
What is the algorithm?	Reverse - Derebe (6):
	sort E by decreasing weight
	For e in E :
	if G-e is connected:
	remove e from G
	return G

What is the RT of Reverse-	-> Same as Kruskal's:
Delete?	Ocm logm) to sort edges
	· M iterations of for-loop
	· cnecking if graph is connected : O(m+n) (BFS or DFS)
	$\neg Total RT : O(m \log m) + m \cdot O(m + n) = O(m^2)$
3.2 : Se	Necting Compatible Intervals
What is an interval?	
	$\rightarrow \text{An array of 2 positive integers } [s,t] s.t. S$
	→ represents an event, where S=start time and t= end time.
What is the SIT - Have	The second secon
What is the SCI problem statement?	- Input: an array A of a intervals (aka a 2-Darray)
SEAFCINCIT	• Ex A = [[[, 8], [2, 4], [3, 6], [], [], 8]]
	Goac: Return a list 5 of compatible intervals that contains as many intervals as
	possilole.
What are compatible intervals?	→ A list of intervals s.t. no 2 intervals in the list conflict at any point in "time!"
What is a real-world application	-> For ex, imagine that A represents a list of event times at a conference. You want
of this pololem?	to know the max ant of events you can attend (so, no overlap), and the list
	ofevents to attend.
How do you solve this problem in	-> Essentially, among all intervals compatible with S, Keep adding the interval
a "greedy" way?	e according to some criterion C.
	- Greedy = always picking the 'best option' however we decide to define that.
Outline of the algorithm?	1) pick the interval e that <u>Curiterion C]</u> .
	2) Remove all intervals that conflict with e
	3) Repeat steps 1-2 until no intervak left.
What are 4 possible choices for	-> C = pick the interval e that
the "criterion" C?	2. Starts the earliest (intuition: start attending events as early as possible)
	2. is the shortest
	3. has the fewest conflicts with the remaining events (eg overlaps w/ fewest number
	of remaining intervals)
	4. ends the earliest
What are counterexamples for options	→ Option 1: If the first event takes all day , then this alg might return a list
1-3?	of size 1 (axa only first interval), when the optimal 4 be events is much greater.
	> Option 2: Let IAI = 3 events, where the shortest event overlaps with the 2 longer ones:
	e1 e2

This alg would return (SI=1, when optimally, size of S=121 (attend e1 and e2)

	- O 2 (, + with Envert mollight up compining events) .
	→Option 3 (event with fewest conflicts w/ remaining events):
	• for each event, opt. 3 assesses each event by the # of events that conflict with it
	· Let 1 At = 11 and the events in A look like this, where the H = H of conflicts:
	$61 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 0 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 0 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 0$
	. The alg will first select event eD. Then, its only options are one event from G1 and
	The Tree of Southard and ablents are one south and at more
	one from 62. So the output # of events will be <u>3</u>
	· However, optimally 151=4 all events in 63 Therefore, in this case,
	option 3 will not produce the correct answer.
So what is the optimal criterion?	> Option 4 keep picking the interval that ends the earliest.
	Select-Intervals (A):
OKay , so what is the SCI algorithm?	sort A by non-decreasing end time - are increasing order of values of t
	S= [empty list]
	For e in A:
	if e doesn't conflict with the last interval in S: interval because we are adding
	e innerse to with any internet is a
	add e to S must also conflict with the last
	return S interval.
What is the RT of SCI?	→ Sorting the intervals: DLn log n)
	-> for Loop : 1 iterations so O(n)
	→ total RT: Din log n)
- <u>3.3: Frac</u>	hional Knapsack-
What is the input?	→ (v, w, B), where
	• v and w are arrays of r_{2} positive integers
	• B is a positive integer
What does this problem	→ lou have n items. Each item has a value (\$) and a weight (1bs.). For each
represent? (The story)	item i in 1-n, the value is V[i] and the weight is w[i]. For ex:
	v=[3,5,10], item one is \$3 and weighs 1 Hb
	w = [1, 2, 5] item \$wD is \$ 5 and weights 21b
	> You have a Kneepsack that can hold at most B pounds of items. GOAL: Uniose
	which items to put in our bag s.t. the \$ value is maximized.
	-> Also, we are allowed to "Fractionalize": We can take 1/2 (or 1/3, 1/4, ctc.) of an item, which
	יי טוועינט נט וויינדנטוטני ער יישר בעון דעובס יב נטו ייז, יין נדנ. ז טר עון וויטין שאווניו

would add \$ v[item]/2 and w[item]/2 lbs to the bag.

What is the goal?	→ Return an array * of size n (aka one element for each og item), where *[i]=	the
	fraction of item i that we are taking ; e.g., $D \leq \pi \lfloor i \rfloor \leq 1$ such that:	
	• sum of all weights is $\leq B$ • sum of the value of the items in the bag is maximized	
What is the algorithm?	-> Idea: keep picking the item that gets you the highest "value per weight", "	7/ V[~]
	· Sore the items by non-increasing VE i] (w [i]	
	· In this order, pick as much of each item as possible "lo the total we	eight
	exceeding & Laica increase 2(13 by as much as possible)	0
	Fractional-Knepsack (V, w, B) X[i] must be ≤ 1 and the total	weight
	Sort items by non-increasing V[i]/W[i] of Knapsach must be EB. So to	
	x= [0] * n xcij=1 if you have space for a	
	For each item i: Otherwises take the fraction	
	increase xCi] by as much as possible - xLi] = weight weight	
	return x	
What is the RT of	- Sorting the items: Dcn logn)	
Fractional knapsack?	→ for loop: D(n)	
	→ + D+ai RT: D(n log n)	

Mi	dterm 1 Review yer.	n pool 2q4	56020:			FBFS tree"		PSEUDDODE ALC
		inche & style with Mon		· DET	and were the	×SCC	ALGS	FORSCL
96	herai NOPes							
→ R	unning. Time: For undirected,	connected graphs: n	4M+1	50 00	m+n)isa	ctually D(m) -	e.g. For BF	s,DFS,etc.
-> P	ray indices start at 1	- Olie	yn) is (BETTER H	han O(n),v	which is better th	an O(n logn)	
-) (r=(v,E) but the pseudocode for	rentices in a graph m	nust be	"for ,	a in <u>V</u> "			
<u> </u>	Ch. 1 : Array Algorithms							
	Max in Arra	y	1		Two	Sum		
INPUT	Array A of distinct pos.	integers		• (A, E)	Array	A of n di	stinct, SO	rted integers
		3			int t.			J
Goal	Return largest int in A					(ن، j) s.t.	isi and	(i+i=t
	1					c.333 3.c.	- 1	(1)
Idea	· Set on = DC12 Scan thomas			·Start	w/ varab	ere" -> \		# 45591
	· Set and = A[1]. Scan through					ers" at beginn	ing and end	-6 -1. · · · · ·
	array (niterations) and chi		. E		L , j = 1er			60
	ans. IF so update ans = A [i]. Keturn ans.				recations (for	r x < len(A)	UK
				hile i e	•		. 1	
						i]+ACj].1F s		scu 172
				14 51	um < t , s	et it=1 and	try again	
			-	16 50	m > b , se	+ j-=1 ar	nd try agai	in
RT	• O(n) - D iterations of fe	900/ 20	· (200 - 1	1 iteration	ns of for-lo	40	
	Binary Search		1		Selectio	on Sort		
INPUT	(A, E) : A = array of sorted in	ntegers	A			nct integers		
		AME as Two-Sun)						
(roa)	Return index K s.t. A[]		Re	turo A	in increa	sing sorted or	dec	
						-		
Idea						(n iterations	.د.	
	"set 2 pointers i j = 1, n			+ m = i		• • • •		
	While is :				3			array utter ()
	· let m = index at middle of arro	ay. Check if HLMJ=+		· Check i	F ACj]	is smaller th	ion AEM]	, which implies
	Lif so, return m)			that it	necds to 1	be moved back	in the arro	y. 15 50,
	· If A[m] > t, create new "subarr	~		swap f	ACi] wiH	n ACj].		
	(now , we are only checking elemen	its from the beginning		·letm=	-j and 10	ntinve		
	to the middle of the array; "12	elements).	• Basi	cally, ide	a is to fin	d the smallest	clement bes	ides index 1.
	· Else is A [m] > t, create new "sul	array" by serting	Swar	that exe	ment vol	ACIJ.Nov, Fin	d smanest in	dexes 1-2.
	i=m+1	5						bit by bit writed order
RT	· O(109 m): In each iter, the number ofe	to parse through ICMENT'S <u>helves</u> .		00,	<mark>م ک</mark>) : 2 f	or loops	2	

Mer	<u>au-Sprt</u>
UDDA	Same as Selection Sort A = array of 1 integers
Goal	Sort in increasing order
Idea	· Split A into left & right half subarrays and recursively sort each half then merge them together.
RT	· D(n log n) . The processes of the alg take D(n) time (e.g. imparing & appending etc.). Since alg is recursive
	called on inputs half the size of the prev one total of login calls * n per call = n login .
Ch	2: Essential Graph Algonithms

Breadth - First Search

> Imput: Directed graph G, int s where SGV

d=[0,1,2,1,3]

- Grown : array d, where d(i] is the "distance" (H of edges that have to be crossed) from node S to node i

> IDEA: 1. Add node 5 to a queve . Set d [S] = D

2. While greve has elements in it, pop the (least recently added) vertex from greve and "process it"

· For every out-neighbor v of a that hasn't been explored, set d[v]=d[u]+1. Add v to the greve.

- APPLICATIONS:

· For a graph G or a "subgraph" G, we can run BFS to find out if the graph or subgraph is connected.

· IF running BFS(G, U2) returns an array of all cos, we know that node U2 is alone, not connected to anything lise.

" If running BESCE, s) For any s returns array where any element is Oo, graph is not connected

TO THER NOTES:

" For u in V ": pseudocode for iterating through any vertex in the graph

· "For v in GENJ" : pseudcode for iter. through all outneighbors of a vertex U.

· A "BFS" tree (all edges traversed while running OFS) is a spanning tree.

> RT: O(M+n)

Depth-First Search

→ Input: directed graph G. → RT: O (m+n)

→ Output: 2 arrays pre[] and post[] → APPLICATIONS: Cycle Finding, TopoSort

 $(4) \longrightarrow (5)$

• Tree edge : edge traversed while running DFS (to a node when it was Ist explored) • Forward edge : edge (u,v) s.t. in the TRSE, there is a path From u to v • Back edge : edge (u,v) s.t. in the TREE, 3 a path from v to u • Crossedge : any other edge

Cycle-Finding

- Input : Directed, connected graph G

- (Goa) : return a cycle in G if one exists.

 $\mathbf{R} = \left(S_1 H_3 Z_3 O_3 S_1 \right)$

- RT: O(M+n): uses DFS

-> I dea : On a graph with all edges labeled, notice that the existence of a back edge implies a cycle (between a back edge and some & of tree edges). So all we need to do is check for a back edge.

- Algorithm: Run DFS and obtain the DFS tree T, as well as pre[] and post[].

The each of its out neighbors (For v in G[u]): I (each combo of (u,v) s.t. vis out-neighbor of u FOR each vertice (For u in V):

if pre[v] < pre[u] < post[u] < post[v]: J Formula to check if edge is back edge

P = path in T from v to u

return P+ (u,v)

Topological Ordering

- Input : a directed acyclic graph G. - Output: a list R that is a topological ordering of the nodes - RT: OLM+n): uses DFS > Topological ordering : list of All nodes s.t.

· For all edges (u, v) E E , V Shouldn't appear in the list before u

Draw the nodes of a graph from L-to - R... the topo-sort Should follow this L-to-R Flow. ANS: R= [5,4,0,2,3,1] or E= [4,5,0,2,3,1] or

- Algorithm: run DES, and each time you add a node to the post[] array, append it to the font of

 $\begin{array}{c} 1,12 \\ (5) \\ (5) \\ (6) \\ (7)$

Strongly Connected Components

- Input : Directed graph G - Output : An array c of the nodes labeled by the SKC they are

-> RT: O(m+n)

in . For all u, v e V, u and v are in the same SCL i.F.E. CLU3=c[v]

-> Strongly Connected : A "subgraph" of a graph G - aka subset of vertices V1 - s.t. for every node in V1 there

is a directed path to every other node in V1.

-> All cycles are SCCs -> 2 -> 5 VI=E1,2,3] is an SCC bit all nodes reachable from one another.

→ SCC in directed graph is analogous to a connected component in an undurected graph.

• The undir-groph converted from a connected dirgraph - or any connected undir graph, for that matter - has exactly 1 connected component; the whole graph.

" A graph is acyclic i.f. F. the size of every SCC is 1 vertex.

- ALGORITHM :

2. Construct 6ª the reverse graph of G, by Flipping every arrow ledge) (linear time??)

2. Run DFS on GR to get the post values for each vertex

3. In order of highest - to -lowest post value post [u], run BFS with s = u to find which vertexes are reachable from u in 6. 4. Each time BFSCG, ux) returns, add all the nodes in d which aren't infinity, to a new SCC group.

Ch. 2 Summary

BES -> use to Find is graph or port of a graph isn't connected

DFS ->. use post() vals in high-to-low order to create Topo Sort for a DAG

· use pre CD and poet vers to check if a graph contains a back edge,

which implies that it contains a cylli.

> Do + his by checkling if pre(v) < pre(u) < post(u) < post(v) for every node V & its out-neighbors U SCC -> . Reverse the graph, Run DFS on reversed graph, use post() to run BFS on each node in high-to-low post-val under.

The nodes explored by agiven run of BFSC 6R, u,) are all in the same SCC.

· Return array c s.t. C[v]=c[u] if v & u are in the same sci

· Running DFS(GR) to get post array. But we run BFS on G !!!

Ch 3: Greedy Algorithms

- Choosing bust option or each time that a choice has to be made.

> Weighted undirected graphs: every edge e has weight u. In code, its similar input as the

odj. list for a dir.graph 2 except for every out-neighbor we use a tuple [vertex v, weight w] :

 $\bigcirc \xrightarrow{-} \textcircled{2}$

6=[[2,3],[3],[4],[]] 6=[[[2,1],[3,4]],[[3,2]],[[4,6]]

- Spanning tree: a path" (subgraph of a graph that reaches all nodes w/minimum & of edges. Ex:

G = 0 0 5.T. of G = 0 0 6

> Minimum Spanning Tree : A ST where the sum of all neights of edges is minimized. Has exactly n-1 edges.

· Goals return an MST as a list of edges (tuples) F that the MST contains.

"A Cut = a subset of vertices S in G. An edge crosses S if 1 endpoint is in S.

Prim's Ala

 $\mathbb{O} \longrightarrow \mathbb{O}$

(), ····)

-> (Aca: Build a bubble by adding vertices to a cut & then looking for the lightest edge crossing the wit. Add lightest edges to a list F. Add vertices to cut S. Repeat n-1 times or until ISIEn. 3 $\rightarrow RT: O(m^2)...(n-1)(m) = O(mn) = O(m^2)$ • At of edges in output MST = n-1 so n-1 iterations. · finding lightest edge : 0(m)

Kruskal's Alg

> lden: Sort the edges by increasing weight (OL m log m)). And the edges to E in order, starting w/ lightest Before adding each edge e to E, ensure that it won't create a cycle by running. Cycle Finding / DES on F. Only add it if Fre is acyclic.

-RT: O(m2) - O(m10gm) + (miterations)(O(m))

Reverse - Delete

 $\bigcirc 1 \bigcirc 2$

-> Idea: Sorteages dy decreasing weight (mlog m). From heaviest to lightest, for each edge e (miters): check whether G would still be connected if we remove e by using BFS (G-e). If so, remove e from G.

→ RT: O(m²)... same as Kruskal's

Selecting Compatible Intervals (SCI)

- Input : Array A of n intervals (interval = [s, t] s.t. s.t). They represent times

- Goar Return a list S of compatible intervals that contains may b of intervals possible.

· compatible intervals = no overlap

-> I dea : keep selecting the interval that ends the earliest.

- Algorithm: Soft A by non-decreasing and time Laka & from [3,2]). From lowest to highest, add interval

x to S if it doesn't conflict w/ the last-added interval.

-> RT: O(n logn) - nlogn (sort A) + n liveratione) > DCI) = nlogn + n

Fractional Knapsack

→ In put: (v, w, B) where v = array [] of n \$ valves, w = array [] of n weights, and B= integer weight limit. • There are n items, for items is,...in, VEi] is its valve and wei] is its weight.

- Goal Keturn array x of 1 IR numbers s. E. :

• O & X[i] = 1 • V[i] = X[i] = the value added to beg for item i • W(i] = X[i] = weight added for item i

sum of x[i] * w[i] for all i is $\leq B$ value is maximized

- Algorithm : Calculate ratio VCiJ (wCi) for all items i, and sort the items by decreasing valve.

For each item starting WI highest ratio, add as much of item as possible "Io weight exceeding

В.

- et: Ola logn) - alogn to sort, a OLI) iterations.

Ch. 4: Dynamic Program	iming
What is Dynamic	→ A way to solve problems that involves solving a sequence of increasingly
Programming ?	larger subproblems by using solutions to smaller subproblems.
	"recursion with a table"
How does dynamic	> Recurrence of a subproblem.
	> Finding the solutions work better than aready most of the time, dynamic
programming compare to greedy!	alg. solutions work better than greedy ones when it comes to Gooding an "polimel" solution
	Finding an "optimal" Solution.
hillocities the Erement for	- Dynamic is more formulaic
What is the format for	2. Find subproblems : Smaller, not necessarily identical "versions" OF
Finding & presenting a DP	the original problem.
<i>«\</i> (· Which subproblems will we solve? What will be reform?
	2. Recurrence: How do we solve each subproblem using solutions to
	smaller subproblems? What are the base cases? Why does the
	rewrence hold?
	· Similar idea to induction or rewision
	• OPTEJ = the "table" of solutions to each subproblem.
	3. Algorithmi Turning this rewritere/ the idea into pseudocode
	· How do we use recurrence to populate a DP table (e.g. an array of)?
What is the BT for money	· Basically turning OPT -> d. Usually, we return the last element in d.
What is the RT for most DP algorithms?	4. Remember to return a solution to the original problem itself.
DP algorithms?	> Typically (& of problems) × (time per subproblem)
- Using DF	to solve "Max in Array"-
RECALL: What is Max in	- For an array A of n distinct pos. integers, return the largest int in A.
Arrayi	$E_{X}: A = [3, 1, 4, 5, 2]$
What are the subproblems?	→ For all i in A, we can find the max integer between A[1] and A[i];
	e.g., starting at AC23 and continously keeping track of the biggest
	int "so Far".
	· For all i in range 1-n, let OPT[:]= max(A[1:i])
	· We will return OPTENJ
	-> Ex: OPTE1]= 3 OPTE2]=3 OPTE3]=4
What is the base case?	→ OPT [1]4 = CI]4 →
What is the rewrsire case?	-> For all i in range 2-n, OPTE:]= Max (OPTE:-1], AE:])
	basically, every OPTEIJ checks if A(i) is greater than any
	element before it.

Why aber this rewrsion hold?	→ max (A[2:i]) is either the largest integer in A[1:i-1] (aka OPT[i-1]),
	oritis ACi]; OPTCi] "picke" the larger option.
What is the pseudocode?	Max-in-Array-DP (A):
	for in range (2,n):
	$di_i = ma_x (di_{i-1}, Ai_i)$
	return d[n]
What is the RT?	> n-1 iterations ; D(2) time for each ; total RT = O(n)
- Longest Inc	reasing Subsequence -
What is the input and	- Input: Array A of n integers.
the goal?	Ex: A= [3,4,1,5,2,3,6,1]
	- Goal: Return the length of the longest increasing subsequence
	(LIS) OF A.
	ANS: 4 S= [1, 2, 3, 6]
What is a subsequence?	- A subarray of an array A that may skip some elements but may not
	contradict the order of the elements in A.
	• E.g. if B=(3,5,5,1), 3,2], then some subsequences are:
	[3,5,3] [5] [5,2], but NDT [1,1] or [1,5]
What is an 1.5. ?	-> Subsequence subcorage where each clement MUST be greater than the last.
	· E.g. for ex arr A (above), presible I.S., are [3], [1,5,4],
	C1,2,3,67, C3,4,5,67.
What are the subproblems?	For all i in (1,n), let OPTCid denote the length of the L.I.S.
	of A that must end on ACiJ,
	Not the same as finding the LIS for the array AC 1:13, ble that
	wouldn't necessarily mean that ACiJ hasto be in the L.I.S.
	$\rightarrow \in X$: A = [3,4,1,5,2,3,2,1]. Let "S" denote the LIS for each subproblem.
	· OPT(1] = 1 , S = [3] · OPT(23=2 , S = [3,4]
	OPTC3)=1, S=C1] because the LIS must and on AC3) for i=3, we can only
	include all ACX) For x = 1,, i. Both AC23 and AC23 are < AC33, So
	they won't form a valid increasing subsequence.
	OPTC43=3 S= [3,4,5]
What will we return?	-> The maximum value in the OPT array. NOT OPT(n) like in problem 4.1.

What is the rewrenze	- EX: lets look at Finding OPTCUJ For this example, Let i= 4.
pattern/idea?	$A = [3, 4], [3, 2], [3, 6], [1] \qquad OPT = [1, 2, 1], , , ,]$
	→ Since OPT[i-1] will represent the longest Lis ending on i, we can find
	the LIS for OPT [i] by Finding the "best" entry ALj] to "come from" before
	"jumping" to AC(3.
	basically, 100K at all elements AC20 where 2 ~ i aka, elements
	that appear before ALIJ, to maintain ordering.
	0 & 011 of these, narrow down and only look at exements A[2] where
	A(x) < A(i) aka, elements which are smaller than A(i) , to maintain the
	"increasing" part of Lis
	of all of these, choose the element & with the largest value of OPT(20].
	The option that brings the longest prior subsequence with it.
What is the base case?	→ OPTC13 = 1
What is the recurrence?	
	→ caleulate OPT (i) for all 122 by satisfying the following rewrance:
	OPTCIJ = 1 + max OPTC j], where
	C= 2jlj < i and ACj3 < ACi3 3
	"C" ≈ set of candidates to consider Uses cond. 1 and 2 from above.
	$if C = \phi, \ OPTCi = 1.$
What is the algorithm?	LISCAD: d=[1] * n • • • • • • • • • • • • • • • • • •
	For i = 2,, n: Concurate dCid according
	for j= 1,, i-1: to described recordence
	if ACjJ < ACiJ and dCiJ < (1 + dCjJ): for DPTCiJ and AciJ = 1+dCiJ AciJ = 1+dCiJ
	acci - z . acju
	retorn max (d)
•	alindromic Sequence (LPS) -
What is a palindromic	\rightarrow a subsequence S where S is = to the reverse of itself.
Subsequence?	→ Ex: A=acbba, then a PS could be Cay, Cby, Cb, b3, Ca, =], or
	$C \in b_{1}b_{1} \in \mathcal{J}$
What is the input &	- Input: a string A of length n. Characters , not numbers.
goar 7.	- coal: return the length of the longest palindromic subsequence
	(LPS) of A
	→ Ex: Ans = 4, LPS = [4,b,b,4].

What are the subproblems?	- Instead of a 20 array, OPT will be a 20 array OPTEJEJ
	→ For all i in $(2,, n-2)$ and all j in $(i,, n)$,
	OPT EIJEJ] denotes the length of the LPS in the subarray
	S = A(i:j)
	• The subproblem is a "substring" - from i bo j - rether than a
	"prefix"
	→ The subproblems are: for each substring of length 2 in range (1, n)
	there are n: possible subproblems (substrings
	· Total of OCN2) subpoblens.
net will we return?	→ OPTCIDEND, because this is the "subproblem" For the array ACD:
	aka simply A.
How can we visualize	- OPT (1][1] = 1, LPS = a, Subarray = ALI: 1] = "a"
орт ?	→ OPT (1][2]= 1, LPS = a or c, subarray = A[1:2]= "ec"
	-> OPT(13C43= 2, LPS = 66, sobarray = A CT: 13 = "actob"
	→ lets create the 2D matrix for A = acbba as a table: j = 2 2 3 4 5
	$2 \alpha 1 \longrightarrow \text{OPT} [1] [j=n] is when we we have the factors of the factors$
	4 b Ø Ø D 1 gany OPTC: DCj) where i=j
	5 9 0 0 0 1 has ISI= 2 be the substring
	any opticicity where is is invalid because
	not a sequential substring
nat are the 2 types of	1) FOR AN OPTRIDITY IF ACID - DC-D - AV A A MALASIA HAAN SHOLE &
	1) For cill OPTCiJCjJ, if A(i)=A(j) - ake, a substring that storts & a
ecorrences" to solve?	W/ the same character - then the entire ACi: j] is an LPS as long as
	the content between i and j - aka, Alit 1: j-1] is also a
	palindrome. So LPS for DPTCiJCjJ is the LPS of the inner content,
	+ 2 For Acis and Acjs
	· Formally: if Aci3 = Acj3, optci3cj3 = 2 + Optci+13cj-1
	· But how would be obtain DPT (1+1)(1-1] ?
	2) if ACi] = ACj], we want to find the LPS of the substring w10 ACi], .
	the substring WO ACJD; and select the larger LPS.
	in the second second the second the second second
	·Formally: if ALi) = ALj],

How do we fill the table?	→ Eachentry in the table depends on the # to the left of it (aka i - 2), below it (aka
	j=2), or to the bottom-left (diagonally) (ake OPT (i-1](j-1])
	→ We chn't Fill but entry OPTCiJCj] Unless OPT Ci+13 Cj3 and OPTCiJCj-13
	and OPTCI-13Cj-13 have already been filled.
	- So, we should fill the table row - by - row L-to-R, starting from the
	bottom row. • Ex: A = [a cbba]
	j = 2 2 3 4 5
	$2 a 1 1 2 u \rightarrow 2 + OPT(23C^{4}) = 2 + 2^{-4}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	i= 2 + 0 + 1 2 2 + 0 + 1 + 0 + 2 + 0 + 2
	3 b 0 p 1 2 2
	4 b p p p 1 1 max (ppt (4)(4), ppt (5,5))
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
What is the algorithm?	LPSCAD:
	d= [0] * (n x n) -> creating our OPT matrix
	For $i = (n,, 1)$:
	100, 012 00 3 1 1 3 1 10
	d[i][i] = 2 the base case bottom to top.
	for j= (i+1,n): - , for each row, we work L-to - R, boot RECALL we only care
	if A(i] = A(j]: about values of Optid where
	$d[i]C_{j}] = d[i+1]C_{j}-1]+2$ $i>i$.
	there is the set of th
	else: Of the LPS for all characters
	edCiJCj] = max (dCi+2)Cj], dCiJCj-1] between A(1) and ACj). Then
	(etvin d[1](n]) add 2 for each of A[i] and
	Case 2 MUJ. CASE I
	Feturning the LPS For the entire string, aka ACZ: NJ.
What is the running time?	-> The DP table has nº entries each of which take O(2) time to compute. Thus,

What is the running time? I The DP Lable has no entries, each of which take OC2) time to compute. Thus,

the RT is O(n2)

<u> </u>	0/1 Knapsack-
What is the input?	-> RECALL 3.3: Fractional Knapsack
	→ Input = (V,W,B) where
	· B = An integer knapsack weight limit
	V = a(ray of item values
	· W = Geray of item weights
What is the goal?	-> Unlike F.K., we can't take "Fractions" of items - only all or none of an item.
	-> RETURN: an integer representing the maximum loptimal value that the Knapsack
	ean have.
RECALL: HOW did we solve	- Order the items by their value ratio, eg VEij/weij for all i. From highest-to-
Fractional Knapsack?	lowest retio, take as much of each item as you can.
	→ Ex problem: 8=4 v= [3,2,2] w= [2,4,3]
What are the subproblems?	-> DPT will be a 2D-array with i= n = 1v1 columns and j= B+1 rows
	(e.g. j 6 § 0, 1, B3 and i 6 § 1, n3).
	-> DPT CidCjd denotes the maximum value of the Knapsack IF we can only
	select items 2,, i. AND, the weight limit is j.
	· for ex, for an o.g. input (v,w, B), OPT(2](3] is the max value
	of a Knapsack where $B_1 = 3$, $V_1 = v[1:3]$, and $W_1 = w[1:3]$.
What will we return?	- DPT CNJEBJ , area the last row & last column. At this index, we have initiative
	the original problem. J= D I 2 3 4 5 because B= 4
	Ex 1 problem i = 2
	problem i= 2
	because n= IVI = 3 E 3
What are the base cases?	→ RELALL: Base case ≈ recursion not necessary to solve.
	→ 2 Base cases:
	1) OPT [:][0] = O For all i, be cause in these subproblems, the weight
	limit = 0, so we can't pack any items. j = 0 2 2 3 4
	2) OPT [2] [] has 2 possibilities : 1 0 3 3 3 3
	• if $j \leq w[1]$, then it is Q bic with $i = 2$ 0
	Fit the item in our beg 30
	$- if j \ge W(13), When it is V(1).$
	• We only have one item to consider.

What is the recorrence?	- OPT (i)(j) for all i=2
	-> 2 possible "cases" for each recurrence:
	1. When considering on item is at weight j, if w(i) >j, then our
	"solution" for the optimal value doesn't change at all, ble we know for a
	fact that we can't bring item i.
	· So, our solution would be the smaller subproblem where the weight
	limit is still j , but the list of items duesn't Lontain i.
	· Formally: IF WCi]>j, then OPTCiJCj] = OPTCi-1JCj]
	2. If item i could fit in the bag, we have 2 options :
	a) To still exclude item is in which case the value is OPT[i-1][j]
	b) To include item i, in which case the value is V[i] + OPT[i-1][j-w[i]]
	"Why? Because if we are picking item i, the space in the bag is now
	reduced by the weight of item i. So we want to add VCi] to the
	optimal value OPTEDCD of the subproblem where j is weil smeller,
	and item i. hosn't been included.
	. We should choose which option, at or b), yields a larger value
	-> Formally: OPT [1] [] - (OPT [1-1] C() if w(1) >)
	max (OPT Ci-23Cj3 _(OPT Ci-2)Cj-wCi3] + VCi3)
	- i= 0 1 2 3 4 Otherwise. Jignoring sincluding i
	1 0 3 3 3 3 1
	$\dot{i} = 2$ 0 3 3 3 3
What is the pseudocode?	Knapsack-DP(v,w,B):
	d= [0] * (n × (B+1)) - B+2 columns blewe want to have a column
	Her Ja Thank O.
	iF := v [2]:
	d[1][j]=V[1] - Base case
	for i=2,n:
	for j: 1,
	if j < wzij:
	dCiJCjJ=dCi-IJCjJ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	else: we can ignore
	dci 3Cj] = max (dCi-13Cj], vCi] + dCi-13[j-wCi]] ~ item i
	return d(n)[B]
What is the running time?	-> Table has n + (B+1) entries. Each entry takes O(1) Line, so total RT is O(nB)

is the DP alg for 9/1	The brute force RT is $\int (2^n - n)$ (trying every possibility)
Knapsack any Faster Han	- The DP Aig isn't necessarily faster; O(nB) could be larger than O(2"-n),
brute force?	depending on the size of B.
	• OLAB) is still not polynomial time
-Edit Di	- But offen, OLAB) could be less than O(2"-n)? idk
What is the "edit distance"?	
* In real python code, A[1:i]	The minimum number of "moves" we need to make to turn a string A into a string B. The "distance" between A and B.
actually means (1,, i-1). But in notation for this class me can	
take it to mean (1,, i), aka A (1: i + 1]. So in my notes 1	2. Insert a character (anywhere in A) "cat" acat"
write either of those kind of inter changeably.	2. Delete a character (anywhere from A) "cat"
	3. Replace one character (in A) with another - counts as one move. "cat" "aat"
what is the problem statement?	-> INPUT: (A, B), where A and B are strings of length m and n, respectively.
	- GOAL: Return a nonnegative integer representing the edit distance from
	A to B. Basically HOC moves to turn A into B
What are use cases for this	- Autocorrect suggestion algorithms . looking at real words w/ a small edit
problem?	distance from the typed word that has a type.
	-> DNA: comparing how similar 2 Strands are.
What are the subproblems?	$\rightarrow \Sigma X : A = "star" and B = "water"$
	-> We will shrink both A and B down to prefixes and find the edit distance for
	each combination.
	→ For all i6 {0,1,m3 (m=len(A)) and j6 {0,1,n3, let OPT(i3(j)
	denote the edit distance from A' = A [1: i+1] to B' = B [1: j]
	-> We will return OPTCMJCNJ.
Why do we start OPT (JC) with	TALD] and BCD] denote an empty string (whilst ALI], For ex, E"s"), solving.
index 01	
	0 " " 0 1 2 3 4 5
	3 a 3 ANS
What are the base cases?	→ OPT COJCjJ = j
	· editing empty string into str of length & will take j insertions
	- and opt(iJ(o) = i
	· editing strog length is into the empty string will take i deletions.

	ja
How would we Fill out	0 1 2 3 V 5 w a + e r
row i=1?	0 " " 0 1 2 3 4 5
	2 t 2 sur sur W, replace swith one of
	3 a 3 then add a Ewsast, e, r], and then Lone possibility) inservice other 2-4 chars
What about row i=2?	j = 0 1 2 3 4 5 w w a + e r
	0 0 1 2 3 4 5 ¥ Here, we have to them St -> wat.
	1 S 1 1 2 3 4 5 OPTIONS:
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	contained to us - replict a)
	64 (cx t (+1)
	3) turn 4 → Wa (+2) (aka OPT [i-1](j-1])
	-> For the 3rd option, replacing + w/ t "replace" t with t (+0)
	actually = doing nothing , so it costs 0 bic A(i)= B(j).
What is the recurrence?	\rightarrow For all $i \geq 1$ and $j \geq 1$.
	→ For each DPTCiJCj] we have to edit A(1:i] s.t. its last character
	equals BLj]. There are 3 ways to do this:
	2) Edit ACI:i] into BC1:j-1], then insert BCj]
	 st→wa→wat
	· OPT [i][j-1] = moves to edit M(1:i] into B(1:j-1)
	So this would be OPT [(](]-1] + 1
	2) Edit A [1:i-1] into B[1: j], then delete A[i]
	· St → watt → wat
	· OPTCI-IJCj]+1
	3) Edit A Clici-1] into BC1:j-1] and replace ACi) with BCj]
	S - wa - wat
	• if ACi) 7 BCj], LOON is DATCI-1)Cj-1)+1
	• if $A(i) = B(j)$, $(ost is OPTCi-i)Cj-i)$
	$\rightarrow Formally, \qquad \qquad$
	OPTCIJCj] = Min { OPT Ci-1]Cj] + 1
	OPT [1-1] [j-1] + Si
	where Sig = O if A(i)=B(j], and = I other mise.

What is the pseudocode?	٤	A (+ - (
		d=	COT) × (LCM	+12	k Lr	+1))					
		tor	1=	۰, -	n	:								
			22	.020	;2 =	: J								
		For	i = 1	·	. m	:								
			d	2130	- 60	i								
		For	· i =	۰,	.,m	1								
		ç	for j	- 1,	n	3								
			a	Cisc	<i>ij] =</i> (min (acij	cj-17	1 + 1	، من	1-17	-j2+	·')	
			14	AC	(J =	BCj	s :							
				dti	scja	= min	(20	.i3Cj	ه, <i>د</i>	(Ci-	NC j	רו-)	
			و	ise :										
				dC:	x;'2=	min (d Ci	scj I	, dc	i-1J	c]-1	3 + 1)	
		re	turn	dcm	זרטז									
What is the RT?	->	δ	mn)	•		_		i=		1	2	3 +	_	r
							0	6.0	D	١	r	3	4	5
							1	S	١	1	2	3	٩	5
						i=	2	" " 5 t	2	2	2	2	3	4
							3	٩	3	3	2	3	3	ц
							ч	٢	ч	4	3	3	4	3
- Independ	ent Se	2:0	Tree											

How do we apply DP to	→ Sach subproblem corresponde to a subtree of the tree T.
tree problems?	- For each subtree, we can define 2 subproblem, tied together by their
	recurrences.
What is an independent set?	> A Wheet S of the vertices of an undir. graph & s.t. :
	¥ u, v es, Eu, v 3 4 E(6)
	· For every 2 nodes in S, those 2 nodes are not an edge in G.
	→ Ex: G= 1,3,63 bic the three
	nodes aren't connected to each other
	4 - S (directry).
Recap: What is a tree?	- An undirected graph T with n vertice, where:
	· There are exactly n-I edges
	T is acyclic
	T is connected

What is a maximum	-> An independent set whose weight is as large as possible.
independent set (MIS)?	(If weights not given, every node has weight=1.)
	> RECALL COMP 455 - The problem of Finding the MIS of an undir.
	graph G is Turing - hard ; notody knows if a poly-time alg exists.
What is the input to	-> A tree with weighted nodes Specifically, (T, w) where
I.S.T. ?	• T = (V, E) is a tree rooted at vertex 1
	· W is an array of length [VI , where W[U] is a positive int. denoting
	the weight of vertex u.
	Unlike MST, in IST, node weights aren't necessarily distinct.
What is the goal?	-> Return the weight of a MIS in T.
Examples?	The labels on nodes represent weights, not node #:
	T = O ANS: 12
	3 2 ANS: 5 (2+3)
	$\rightarrow \Sigma \times : T = $
	50000
What are the subproblems?	→ We can't do prefixes like in arrays, but the ≈ of that is subtrees.
	\rightarrow For all nodes in T (For all $u \in V$), let T(u) denote the subtree rooted
	at node w.
	$\cdot \epsilon_{x} \cdot \tau(3) = 0$ and $\tau(1) = 0^{2}$
	-> We define 2 subproblems for each vertex subtree T(w):
	DPT in EUD : denotes the weight of the MIS in TLW) but we must
	include node u.
	2) OPT out Cu] : denotes the weight of the MIS in TLUI but we must
	excivde node u.
	-> SX: OPT : [3]= 3 OPT UL [3] EII
What will be return?	- We will return max (OPT Cr3, OPT Cr3), where r is the root of
Winds WILL ACTOIN :	
What are the base cases?	the whole free T. C.g. node 1 in exabove. → If u is a leaf - alea a node u/ no children, like node 7 from ex above,
Are the pase cases ;	
	then T(u) is a graph withing one node:
	• OPT , [u] = w[u] (we include node u)
	· OPT

- Given the base case, we can find OPT in Cu), OPT out Cu) for all leaves :

How will we find OPT_{in} and \rightarrow For the second loyer of nodes u_{i}^{i} , OPT_{in}^{i} will be well because we OPT_{out}^{i} for the nodes which constrained any of its children. are not leaves? $\rightarrow OPT_{out}^{i}$ will be the sum of the OPT in values for each child, since the children are not connected: added $T(2) = (4) opt_{in}^{i}[2] = 4$ $OPT_{out}^{i} = 1 + 2 = 3$ $OPT_{out}^{i} = 1 + 2 = 3$

What is the rewrence for	- For all u in T which are not leaves, OPT, [u] will be the weight of u,
OPT , EUJ ?	Plus the OPT out [v] value for each of u's children
	· Why? Blif including u, we can't include u's children. But we can
	include u's "grandchildren" so For en uz u's children we add up the
	Line of the Michael and Alexandre and Alexandre
	· Formally, OPT END = W(W) + 2 OPT out [V]
	ve chen

What about OPT [U]? I We con't include u, but that doesn't mean we are forced to include u's out of the out of

* For each child, decide if it should be included (independently).

· Formelly, OPT CUJ = 2 Max (OPT, CVJ, OPT CVJ) T = ()21,23

(1,3 (1) (3),1 (3), D So ans = Max (21,23) = 23 !

-> Amother Ex: 2,9 2 9,0 9,0

 \rightarrow

How would we implement the	The input T will be expressed as a list of lists of each nodes		
solution in code?	neighbors , and w is a list of each nodes weights. Ey , for ex 1:		
	$T = \frac{1}{12} \qquad T = [[2,3,4], [1,5,6], [1,7,9], [1], [2], [2], [2], [2], [2], [2], [2], [2$		
	50 2 5 5 w= E1,4,3,8,1,2,5,67		
	- First, we should convert T into a dir.graph where we pick any node		
	• In code , this becomes a list & where GEW) is a list of 1		
	G=[C2, 5, 43, C3, C3, C3, C3, C3, C3, C3, C3, C3, C		
	· This makes it much easier to work with. Now we know where to shart ~1 the		
	"leaver" calca all nodes a where GCu] = C] (are empty).		
How will we ensure that we solve			
the subprolourns in the right order?	→ We need to ensure that when we solve subproblem rooted at node u, we have already goived the s.p. for each of u's children.		
	- SOLUTION: Use a topological ordering ! We want to solve the Subproblems in		
	reverse to pological order. D 3 3 5 5 5 3		
	• One possible topo sort : C1,2,3,4,5,6,7,87. The reverse of this		
	= the order in which we'll perform the recorrence. MIS-Tree (T,w):		
What is the occurrence of	Convert T to dir. graph (?) obtain the reverse topo ordering		
What is the pseudocode?	din, doux = [0] = n, [0] = n in which we will solve the subpobleme		
	node_order = Topo_Sort (V)		
- Printer	node_order = reverse (node_order)		
• D. are we are any remuning it the max from u = 27 book it. the max from u = 27 book it.	For UEV in "node_order" order :		
the max from a the rout of araph we			
	din Cull = WCull For all of u's children IF u is a for v 6 T(u):		
the max from u= thu 0.3 we have to be pre root of the dir. graph we have to be pre root of the dir. graph we ur une root of the dir.	d , Cu3 += d , EV3 Lovers the "base cases".		
	$\lambda_{ovt} (u_3 + max (d_{in}(v_3, d_{ovt}(v_3))))$		
	return max (d [2] d [2])		
	out out the tout of the tout of		
	→ There are 2n subproblems (2 for each vertice) and each takes O(n)-time.		
What is the running time?	-> However, since T is undir, the RT is not Oln2) because computing the recurrence		
	For each n is O(1ch(u)1)-time.		
	- Since T is an undir. TREE , there are exactly. n=1 edges. So total RT= D(n).		
	- Similar concept to BES RT for undir. graphs.		

-Common DP Patterns -

What are common DP patterns if the input is. 2. $\forall i \in [n]$ (as a for all $i = 1, ..., i \in OPT[i] = OPT [the optima]$ an array A of length Solution" given the "input" is now (A (1- i]). n ? · Max-in - Array 2. Vie [n]: OPT [i] = OPT given the "input" is now (A[i:n]). 3. Vie [n]: OPT [i] = OPT given "input" is now (AC(1:i]), that somehow involves ACij · Longest hursding subsequence (Kind us) MIS in trees 4. $\forall i \in [n]$ and $\forall j \in [i,n]$ (exa all j = i + 2, i + 2, ..., n): OPT CI JC j] = OPT / optimal solution given the "input" is (ACi : j]). · LPS 5. Vierni and V jezo, 1, ... K3. OPTCIDCJJ = OPT given the (A,K), where A=array inputisnow (ACI:13, 1) and K= positive integer? · 0/1 Knapsack 6. Vie [m] and Vie [n]: OPT(1)(j) = OPT given the input is (A, B), where A and B (AE1:13, BE1:13) are arrays of length M and n! · Edit Distance 7. Y u & V : OPTEUS = OPT given the input is (Tw) (tree rooted at u) (T), where T= a rooted tree 8. Yusv: OPT Cul= OPT given the input is (Tu), that somehow involves with vertex set V? u.

· MIS in Trees

Ch.5: Shortest Paths What is this chapter about? → Ch 5.1-5.3 (Onsider variants of the Single - Source Shortest Path (SSSP) problem
(\$\$\$\$P) problem → 5.4 considers the All-Pairs Shortest Path (APSP) problem. Whet is the SSSP problem? → Input: (G,S) where G is a directed graph with edge lengths l. ·S is a vertex in G (SEV) that is the "source" vertex. → Goal
What is the SSSP problem? > Input: (G,S) where G is a directed graph with edge lengths R. S is a vertex in G (SEV) that is the "source" vertex. - Goel: Return an array d of length r2 s.t. for all VEV, dCV] is the shortest
Whet is the SSSP problem? > Input: (G,S) where G is a directed graph with edge lengths &. > S is a vertex in G (SEV) that is the "source" vertex. > Goel: Return an array & of length n.s.t. for all VEV, dEV] is the shortest
·S is a vartex in G (SEV) that is the "source" vartex.
- Goel Return an array d of length n. s.t. for all VEV, dEV] is the shortest
Have we done this problem before? → Yes! IF Q = 1 for all edges (all edges have same length), then running
BFS(G,S) Would return the SSSPS.
How do we represent edge - We embed the edge length in the adjacency list of edges.
lengths in our dir-graph input? + 52: 4 (2) (3,-1)], [3] edge pointing to
2 3 node 2 og length

<u>- Di</u>	AG DP -
What is the problem?	-> Input: (G,S) where G is a DAG (directed acyclic graph) we edge lengths
	- boal: return the SSSP. e.g., for all veV, the shortest path from
	node s to node v.
	→ 5x: 5 3 5=1
	$(1) \xrightarrow{q} (2) \xrightarrow{{b}} (3) \xrightarrow{q} (4) \xrightarrow{{2}} (5)$
	· Whenever the input to a problem is a DAG, it is helpful to look at the graph
	in topological order (like Ex above).
What are the subproblems?	- For all VEV, let DPTCVJ denote the distance from & to v.
	-> INTUITION: comparing lengths of Whys to get from 5 to v:
	$\begin{array}{c} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ \end{array} \begin{array}{}$
	$\frac{1}{2} \qquad \qquad$
	but going (D→(D) (D→(B) takes 9+(-6) = 3
	→ We will return &= OPT.
What is the base case?	→ DPTCS]= D (distance from sto itself).

What is the rewrence?	-> LOOK at all the choice to get from s -> v.
	· AKA, uncck OPTEUS for all nodes a which are an in-neighbor Lika
	"point to") v. This represents the shortest path from s to an in-nor of
	v
	· Add the distance from u -sv
	" Choose the smallest option.
	→ Formally, For all v≠s, OPT (v] = min (OPT [u] + R((u,v)))
	for an u: (u,v) e E L G)
	· in code, the length of edge (usv) is the 2 nd exement in the tuple
	(V, R) For GEUZ
What is the pseudocode?	- We want to solve the subproblems in topological order.
	- Also, for every V # S, we need to look at the lengths of all of v's in-neighbors.
	Initially, this info is not stated at GEV], but at G Ein-neighbor of V].
	·Tomake it-eusier, we will also save a graph G'where every edge is reversed
	and GEV I tells us the in-neighbors of restice v.
	· Kind of "pre-computing" the in-neighbors of v. DAG-DP (G,s).
	d= [m] + n G'[v] liste V's in-neighbors
	d[s]=0
	ordering = Topo_Sort (G)
	G' = G with each edge reversed
	for v e V in "brdering" order:
	For u in $G^{2}[v]$:
	dCvJ = min (dCvJ, dCuJ + l(u,v))
	G' = [C]] * 0
How would we create G'?	
	For u in V(G): (1) (1) (1,2)), [(2,5)]
	$f_{00} = v \text{ in } G[u];$ $G' = [[], [(i,3), (u,5)],$
	add u, k to G(v) [(1,4)], c(3,2)]
What is the running time?	→ Topo Sort W(DFS is O(M+n)
	- computing G' is DCm+n)
	- computing d(v) takes O(+ of in-neighbors (v))-time. The sum of
	in-degrees (ake edges!) is m, so the total RT is D(m+n)

How else could we use the logic of	→ To find the longest paths instead & shortest; chande dC- 00] to
the DAG DP problem ?	dcool, and find max() instead of min()
	- Every DP has an underlying DAG
	The referes are like subproblems
	The edges & dependencies in the rewreak.
-Bellman	The this way. DAG DP is kind of a representation of all DP problems.
What is a negative cycle?	→ A cycle in a dir.graph where the sum of the edge lengths is < 0.
	→ IF we consider finding SSSP for a graph W/ negative cycles, the problem
	becomes NP-hard Loopply-time alg discovered yet).
Why do negative cycles Make	-> It becomes difficult to say what the "shortest path" for s -> V is, because you
SSSP hurder?	could choose to cycle infinitely through a negative cycle of vertices , because it
	allows the length to get smaller & smaller to negative infinity.
What is the problem statement?	-> Input: (6,5), where G = a dir.graph w no negative cycles, and
	S= the source vertex.
	- Goal: Return array & representing the SSSP.
What are the subproblems?	
	→ Uniter 5.1, in this problem G is not necessarily acyclic, so we can't utilize Topo-Sort to help us shrink & order the actions
	Topo Sort to help us shrink & order the problems.
	→ for all v ∈ V and j ∈ §0, 1, 13 where n = + of vertices, let
	OPT CVJC jJ denote the length of the shortest path from s - v, where we
	can have at most j edges in our path.
	· j 2 our "budget" of edges. Kind of like 0/2 knapsack
	\rightarrow j goes from $0 \rightarrow n-1$ because a path starting at S has max $n-1$ edger;
	any more edges than that would mean you are repeating edges.
What we will return ?	- The Lolumn (list at OPT C JCn-1] Caka, s.p. For each v when allowed
	to use as many edges as you wants.
What are the base cases?	- OPT [S][j] = 0 (peth from s - s will use no edges). For all j.
	-> For all v #s, OPT [v] [0] = to (if we can't use any edges, the length to get to v
	$(s \alpha)$ $(s - 1)$ $(s - 1)$

What is the recurrence?	->For all v ≠ s and j≥1, the path will either :
	· have at most j-I eages , area OPTEVJEj-1]. basically, the length
	of the path S -> V where we don't use the "option" to add 1 more edge. OR,
	. have if edges , in which wase we use any of the paths that lead to
	an in-neighbor of v and have j-1 edges , and then we add on the
	edge from in-neighbor ->v as our "j"" cdge.
	-> We want the min. of these 2 choices. Formally,
	$OPT EVJCjJ = min (OPTEVJCj-IJ, min (OPTEVJCj-IJ + l(u,v)).$ $u:(u,v \in e$
	ymin for all nodes u which are
In what order do we solve the	→ DPTCVJLjJ depends on OPTEVJLj-1J, so we in-neighbors of v.
suppoblems?	will fill it out column-by -zolumn, left-to-right.
	· For every column &, calculate every dcv3cj) according to the
	rewrence.
What is the pseudocode?	Bellman - Ford (G, S):
the pseudocode :	
	$d = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{$
	d [s][0] = 0> base case
	G'= G w each edge reversed
	For j= 1, n - 1: So that we iterate column-by-column
	For v & Vertices & 6: Start by setting
	d [v][j] = d [v][j-1].
	for u in G'EVI:
	dcv3cj3 = min(dcv3cj3, dcv3cj-13 + l(u,v))
	return d[.][n-1]
What is the Running Time?	-> There are n columns. Each takes (m+n) - time, bluwe're basically performing
,	DAG DP on each.
	$\neg \operatorname{Total} RT = O(n)(m+n) = mn+n^2 \simeq O(mn) - Hime (b cm>n)$

- Dijkstrak Algorithm -

What is the problem statement? -> Find the SSSP, like in the other problems, but this time, all edge lengths L are nonnegative. Find shorks + poth from s -> v for all v E V. - Similar to Prim's (ch.3): keep picking the heaviest edge that adds a What is the algorithm? - Set all SSSP lengths initially to be 00 - Starting with node s, add s to your "bubble" and then process it → "Process it" = relax (u,v): See if we can decrease our "current What does it mean to estimate" of distance from s -> v by finding a node U that is an "process" en edge? in-neighbor of v, and calculating length(s,v) to be length (s,u) t length (u,v). 5 3 • The SSSP for 1 -> 3 is 3 if we go through node 2 rather than directly from 1 to 3. edges (1,4) and (1,2): edges (1,4) and (1,2): d= [0, 7, ∞, 1, ∞, ∞] Which node dowe process → The vertex with the smallest d(v] value so far ; e.g. node that is currently next? least distance from S. · Add this node to the bubble, then "process it" to recax its edges. → For every out-neighbor u of node v, check if (dCv]+l(v,u)) < d[u] How do we relax the edges · aka, is the path s -> v + path v -> u shorter than the current of the node added next? Shorteer path for 5 - 1 4? 3 6

Summary: What is the	- Starting with node s and then by chousing the node with the smallest
intuition for this alg?	s→v path-length, and until the bubble doesn't contain all vertices :
Ŭ	· add the node (v) to the "bubble"
	· "process" v by relaxing the edges , aka , for each outneighbor u of v ,
	check if the length of s try plus the distance from v to is
	smaller than the warent value set For length (5-34)

· Finally, return the array of shortest paths.

Wher is the pseudocode?

What is the RT? -> O(n=)

- Floyd -Wa	urshall—
	-> "ALL Pairs Shorkest Path"
When is the APSP Problem?	
	→ Input: a directed graph G with edge lengths (negative allowed) &, where G
	has no negative cycles.
	Goal: return an n+n array &, where For all u, v E V, d [u](v)
	is the length of the shortest path from u to v.
	· Basically same as Bellman-Ford, except no specified S.
Why can't we just run	> We could, but the RT would be n'
Bellman-Ford n. times?	→ with DP, we can do this Faster.
What are the subproblems?	- Instead of shrinking by the amount of edges we can use to get from u to
	v Like in B-F), we shrink by reducing the set of vertices, r, that
	we are allowed to use to get from a to v.
	→ For all u e 21,n3, all v e 21,n3, and all [e 20, 1,n3,
	DPT CWJEVJErJ will devote the length of the s.p. from u -> v with
	only vertices {1,r 3 available as intermediate vertices.
	・ total 吸 へ・ハ・レハナン こ n3 subproblems
What will we return?	- The "table r=n"; alca, the table of u & v path lengths when
	r=n.
	· Think & DPT CW] CV JCr] as a set of <u>n</u> nxn tables where
	each table has the s.p.s from all u to all v when we are allowed
	to use [r] vartice.
	- RET: OPTC-3C-3C-NJ.
What is the base case?	→ IF r=0, we can't use any intermediate vertices, so OPT[u][v][o]
	will be a UNLESS:
	U=v, in which case OPT [u][v][0] = D. DR
	· if (u,v) is an edge in G, in which case OPT(u)(v)(0)=l(u,v).
	$h = 2 \qquad h = $

What is the rewrence?	-> The tuble for r=n will rely on the table for n-1, and so on.
	(lelying on previous table)
	\rightarrow IF $r \ge 1$, then we are allowed to use nodes $1-r$ along the way from $u \rightarrow v$.
	There are 2 options for OPTENJEVJErJ
	2) Don't use node r, in which case OPT EUJCUJErJ= OPTEUJCUJEr-1]
	2) Use node r, in which case we want the distance from node u to node r,
	plus the distance from node r to node v.
	• We want to obtain these values from the sp wasn't allowed as an intermediate
	Vertex, aka:
	CI13CV3Cr3T90 And CI-2Cr3T90
	dist (u,r) dist (r,r)
	- We want the minimum of these options. Formally
	DETCHDENDED = DIE (DPT ENDENDER-1),
	$OPTCUJCVJ(r] = \min \begin{cases} OPTCUJCVJCr-1J, \\ OPTCUJCrJCr-1J + OPTCrJCVJCr-1J \end{cases}$
What is the pseudocode?	Floyd-Warshall(6):
	$d = [\infty] + (n \times n \times (n + 1))$
	For a in range (1,,n): _ base case: Filling out table r=0
	ACN3CU3[0]=0
	For v E G(u):
	$\mathcal{A}_{\mathcal{C}} \cap \mathcal{J}_{\mathcal{C}} \cap \mathcal{J}_{\mathcal{C}} \cap \mathcal{J}_{\mathcal{C}} = \mathcal{J}_{\mathcal{C}} \cap $
	for c in caper (line p): 7
	For u in range (1)
	for vin range (1,n):
	dcu3cv3cr3 = min (dcu3cv3cr-13, dcu3cr3cr-13+dcr3cv3cr-13)
	return d[.](.](n] - return table []
What is the RT?	-> n×n×n subproblems so D(n3) - time.

Midterm 2 Study Guide - Dynamic Programming	
A = [3,4,1,5,2,3,6,1] . Subproblems: OPT[i]= (15 ending on ACi] . Return: Max elemen	t in DPT
OPT[1]=1 Base (ase: OPT[1]=1	
0PTC23 = 2 0PTC3 = [1,2,1,3,2,3,4,1]	
097(3]= 1 ANS= 4	
- Intuition: For DPTCiJ, look at all elemente A[1:i] (ax a clielements up to element i)	
· Narrow down & only look at elements & in AC2: i] where ACXI < A(i) (ble need on in	CTA CIDA
	si cu sing
sequence)	
• DE all of these, check which one has the max DPT value, DPTC x3. • OPTC(3 = DPTC x3 + 1.	
→ Recurrence: DPT(i]= 1 + Max (DPTCj)) for C= Zj j <i aci]3.<="" acj]<="" and="" td=""><td></td></i>	
> ALG:	
d= [1] × n (because every US will have at least length 1)	
Sector 2 and 2	
$\rightarrow RT: O(n^2) ble 2 for loops$ for j = 1, l-1:	
$if AC_{3} = AC_{1} = C_{1}$	
dCi = max(dCi , dCj + 1)	
(eturn max(d)	
L.P.S.	
-> Problem Statement: Find longest sequence of characters in A s.t. the sequence is a palindrome.	
 The sequence doesn't here to be subsequent in A. For ex, abba is a P.S. of abracadabra A = acbba Subproblems: OPTCiJCjJ= length vg Lps for ACi:jJ. S.g., OP 	TC > 7 < 5 > -
$OPT: a c b b q \qquad A(x:s) = cbba$	
Base Cases: For all (=1,,n, OPT () J()] = 1	
a IF ALIS = ACIS, we have a the up at least length 2 just by the si	
"ACij Acij " But if the chars between i and j also have a p	salindrome,
->RT: DCn2) OUT LPS 2011A be even longer. So:	
· CASE 1: 18 ACi] = ACi], OPT CI]CI] = 2 + OPT (1)	-1363-13
the southing between i and j. AEi+	
-> IF ACI] = ACj], then we want to compare the LPS for the substring without ACi] - aka OPI	C1+17C]J
- and the substring WID ACJI-aka OPTEISCJ-1]. We keep whichever is larger. So:	

· CASE 2: IF ACI3 # ACj3, OPTCIJCj1 = MC» (OPTCIHIJCj1, OPTCIJCj-1)).

Midtelm 2 Stud	y Guide - Dyna	mic Programming
----------------	----------------	-----------------

0/1 Knapsack

- Problem Statement: (1, w, B) where B= weight limit, and for n item choices, V[i]= value of item i and was - weight of item i.

· Return the maximum value of the knowpeack where we can only take Allor Nowe of each item.

D=4 v=[3,2,2] v=[1,4,3]

OPT:	D	1	<mark>۷</mark> ک	3	Ч	· Subproblems: i=1,n and j=0, B OPTC; JCjJ = Max value of Hnapsack
ι	0	3	3	3	3	if we can only choose items 2, and the weight limit is f.
· ۲	0	3	3	3	3	· Base Case: For all i where j=0, OPTCIJCOJ = 0
3	o	3	3	3	5	· Base case: For all jumere i=1, if w[i] e j, OPT(1][j]=V[i]. Else, if w[i]>j,
						0 = C[JC17790
						· leturn: OPTENJEBJ (bottom right square)

Intuition: Fill our table row by row, alka each susproblem & introducing a new possible item.

-> If will > j, we can't possibly add item i to our bag, so our max valve is the same as the 1 where item i wasn't an aption: ·CASE 1: OPTCiJ(j) = OPTCi-1JCj]

-> If wci] < j and we still want to add item i to our bag, we have a value of at least vci]. After adding item I, we have (j-WCi]) pounds of space left. OPTCi-I][j-WCi]] will give us the maximum value we can obtain to fill the rest of the bag. We add v(i) to this.

CASE 2A: DPTC: JCj] = DPTC:-1]Cj-wCi] + VCi]

-> IF weil < j and we still DONT want to add item i to our bag, our max value is the same as if item i wasn't an option :

```
· CHASE 213: OPTCIJCj]: OPTCI-IJCj]
```

-> We want the max of 2A and 2B for Case 2.

- Rewrrence: For all 122:

 $OPTCIJCJJ = \begin{cases} OPTCI-IJCJJ if wciJ>j, and \\ max(OPTCI-IJCJJ, OPTCI-IJCJ-wciJ)+vciJ) otherwise. \end{cases}$

- RT: OLN2)

Midterm 2 Study Guide - Dynamic Programming

- Edit Distance
- > P.S : Given two strings of length 1/2 and 1/2 (14, B), return the min 4 of "moves" needed to twin str A into str B ... axia the 'edit distance'
- -> "Moves": Insert a Unaracter anywhen in A, delete a character anywhere from A, or replace any I character in A w another. -> Suppoblemes: For i= 0,...m and j=0,...n, OPTCiJCjJ = edit distance to turn ACI:i] into BC1:j]. Se.g. OPTE2 JE3] = turning "st" into "wat" -> Return : OPTCMJ(n) i= 0 represents Bas the empty string, "" 0PT 1"'' W ~ + e r
- 8 D 0 1 2 3 4 5 - Bate Cases: Editing an empty str A into a string B of length j will take j 65112345 insertions, so OPTEDJEjJ= j For all j.
- + 2 2 2 2 3 4 · Same concept for editing strA of length i into empty string B via i deletions 4 3 3 2 3 3 4 (OPTCIJCO] = i For all i). EX: 097(3)(4) ,"sta" -> "wate"
- 4 3 3 4 3 ANS r 4
- * Recorrence: for is I and jz1, we have to east ACINIS so its last character = BCj3. 3 DPTIONS to do this: 2) Edit A [1:1] into B [1: j-1] and then insert B [j] sta -> wat -> insert "e" -> wate
 - ·AKA, OPT []] [] 1] +1 (for the insertion)
 - sta _ wate a -> delete "a" -> wate 2) Edit A[1:i-1] into B[1:j] then delete A[i]
 - · AKA, OPT (:-IJC j] +1 (For the deletion)
 - 3) Edit A(1:1-1) into B[1:j-1] then replace ACi) with B(j) sta -> wat a -> replace "a" with "e" -> wate ·IF ACi 1 = BCj 1, then OPTCi 1Cj 1 = DPTCi -1)Cj -1) + 1

"If ACI] = BCj], then we don't actually need to spend a "move" on the replacement, so OPTCIILJ) = DPTCI-1)Cj+1) - Take the min of These 3 options. Fill table T-D, L-+U-R.

- PT: O(mn)

Midterm 2 Study Guide - Dynamic Programming

Ind. Set in Trees

→Input: (T, w) where T = a tree rooted at vertex 1 and w = an array of length n (4 of nodes) where - = node # T = 0' 29 23 48 WCU] = the positive int "weight" of node u. · Besically a tree w/ weighted nodes. 500 6 Q

• Tree = acyclic, connected undir. graph with n-1 edges.

- Goal: return weight of the independent set (subset of nodes where NOWS of them have an edge to each other) with the maximum total weight of all the nodes.

OPT [2] = 4 OPT [2] = 2+1=3

→ Subproblems: For all u ∈ V, T Lu) ≈ the subtree rooted at node u. E.g. T(2) = 000. For all TLu) subtrees:

• OPT in Cu3 = the weight of the MIS of T (u) that MUST include node u.

· OPT [w] = weight of MIS of The that CANNOT include node u.

DP Patterns

-> Input = Array of length n:

2. Y i e [n] (aka for all i=1,...n) : OPT[i] = OPT / the "optimal soln" given the input is now (A (1: i]). 2. Vie [n]: OPT[i] = OPT given the "input" is now (A[i:n])

3. Vie En]: OPT [i] = OPT given "input" is now (AC(1:i]), that

Somehow involves ACij

· LIS: required to end on element A(i)

4. $\forall i \in [n] and \forall j \in [i, n] (aka all j = i+1, i+2, ... n):$

OPT Ci JC() = OPT / optimal solution given the "input" is (ACi : j]).

· LPS : Finding UPS For ACI : j)

-> Input = (A, K), Array of length ~ and int K:

5. VieEnj and V j620,1,... K3. OPTCIJCjj = OPT given the "input" is now (ACI:23, J)

· 0/1 Knapsack : find max valve if we have weight limit if and items 1-i.

- input = (A,B), Arrays of length m and n:

. Vie [m] and Vje [n]: OPT (i] (] = OPT given the input is (AE1:i], BE1:j])

· Edit Distance : edit dist to turn ACI:1] into BCI:1].

- input = rooted tree T with vertex set V:

7. Y u e V : OPTEUJ = OPT given the input is (Tw) (tree rooted at u)

8. Y us v: OPT [u] = OPT given the input is (Tw), that somehow involves u.

Midtern 2 Study Guide - Shortest Paths

DAG DP

>1P.5: Input = (G,S) where G= directed, acyclic graph with edge lengths & and SEV.

Find the lengths of the Shortest paths from S -> V For all VEV. Return in an array d.

- Subproblems : OPT [v] = length of S.P. from S -> v for all vEV. We return d=OPT.

- Intuition: Each time we consider a node u, we consider all of its in-neighbors (nodes pointing to it). For each

in-neighbor x, the potential path length for s - u = DPTCx] + len(2, u) - the SP to x + the length of path from z to u.

"We must "consider" a node only AFTER we have "considered" (are computed OPT) each of its in-neighbors, so we should consider the nodes in TOPD - DRDER .

" Base (ase: OPT[S]=0

-> Rewrence: Choose the minimum (DPTCx] + R(x, u)) for all in- heighbors of v.

• OPT CVJ = min OPT CuJ + (Lu,v) u:(u,v)6E

- ALGORITHM:

2) instialize d=[m] = n and d[s]=0

2) Construct G' = Reverse graph of G to get all in-neighbors of node u in graph G.

3) In Topo-Soit Order: For V in V:

for each out-neighbor of v in 6' (for u e 6'(u)):

dEv] = min (dEv), dEu) + l(u,v)) ~ updates for each pos. in-neighbor

-RT: O(M+n)

Midtern 2 Study Guide - Shortes + Paths

Bellman - Ford

→ P.S. : Return array us shortest paths from node & for (G,S) where G=directed graph with no negative cycles . Edge lengths CAN be negative.

→ Subpoblems: A path from S to any u can have <u>max</u> N-1 edges. For all v & V and j & {D,1,...n-2}, OPT CvJCjJ= The length of the path from S→v using at MOSI j edges.

> Return: List at OPTCJEn-1] (are no budget on num. geolges)

-> Base Case: OPTES JEjJ = O For all j. OPTEVJED] = 00 For all V75 (can't Form path W/ O edges).

-> Rewrence: For all v # 5 & j ≥ 1, the path has 2 Options:

2) Do not utilize the ability to use all j edges . Only use j-I edges , are same soln as that where budget = j-1 · CASE I: OPTCVJCjJ = OPTCVJCj-1J

2) Utilize all j edges. Our "j" edge" will be the one pointing to V, so it must come from an in-neighbor u of v. Therefore, for all in-neighbors u of v, find opTCuJCj-13 (the SP with j-1 edges) and add llu,v) ble its the jth edge.

·CASE 2: min (OPT Cu3cj-1] + l(u,v)) for all u=in-neighbor of v.

- Take the minimum of the 2 cases

-> Fill out table column-by-eblumn, left-to-right. Because OPTCV3(j3 depends on prev column, DPTCV2(j-1). -> RT: OLMN)

Dijkstra's

- PS: SSSP for (6,5) where all edge longthe are non-negative.

> Intuition: We initialize all the SP lengths to be to (alec d= [00] #11). d(S] = 0 ble path from S-3S.

2) Choose u, the node w lowest d value. I must also NOT be in set S. At first, this will be s (u=s). 2) Add u to our set of processed vertices S.

3) LOOK at all out-neighbors to of u. d[u] = SP from s-3u, so a possible path from s-3u could be d[u] + l(u, t)

· If this possible path is a current SP for 2, update the SP. aka

d(x) = min (d(x), d(w) + l(h,x)) where u is the node we are currently processing. 4) Repeat steps 1-3 until all nodes are in set S. Return d.

→ RT: D(n2)

Midtelm 2 Study Guide - Shortes + Paths

Floyd-Warshall

- → PS: Given graph G, find APSP: an nxn table depicting the SP from u →v for all u, v E V (aku ull possible pairs of nodes)
- → Subproblems: For all u, v & V and r & 20,...n 3, OPTCUJCUJCTJ = length of SP from u → v where we can only use nodes {1,...r 3 to get from u to v.

-> Return : The table OPTCJCJCNJ - are all nodes allowed as intermediate.

> Base Case : When r=0,

· OPTCHJCVJCOJ = O for all u, v when u=v,

·OPTCUS(VSCO] = l(u,v) for all u,v when 3 an edge u→v,

· and OPTCUJCUJCUJ = Do otherwise

The contence : Fill the 3D array table by table, exa r=0, r=1, so on. The OPTCJCJCOJ table was our case For all OPTCUJCUJCUJ when r>1, we have 2 options :

2) Don't use the newly allowed intermediate vertex r, in which case OPTCUJW) Cr3= OPTCUJKV) Er-1].

23 Use node r in the middle of the path from usv. In this case, we want to add up length (SP from

u -> r) + Longth (SP from r => v). Specifically, we want these longths from BEFORE I was allowed

base

-> Take the min of the 2 options T.

-> RT: n×n×n matrix so O(n3)

Ch. 6: Flows and Cu	
What is the maximum flow	-> RSCALL: Shockest Path problems are about finding the fastest way to get a
problem?	truck from points to point t
	-> Maximum Flow problems ~ sending as many trucks as possible from s to t.
What is a flow network?	\rightarrow an input (G, s, t) where
	· G = connected , directed graph where each edge e has a "capacity"
	$c(e) \in \mathbb{Z}^+$ (positive int)
	· s = a node in G that represents the source vertex.
	· ASSUME that no edges point to S
	. t = a node in G that represents the sink vertee.
	·ASSUME that no edges are pointing out of t.
	Assume that s = t
	-> EX . thing of the graph as a map of roads to check points . We want to maximize
	the ant. of stull we can send in truckes from point & to point <u>t</u> .
	· Each Road has a "limit" on the amount of trucks that (an be on it.
	$3 \rightarrow 0 \rightarrow 0$
	"Source" 5 "Source" 5 "Capaciby" of the edge 3 1 2 2
	"(aparity" of the edge 3 1 2
RSCALL: What is a cut?	→ A subset S of vertices
	 Sour(S) = {(u,v) ∈ E : u ∈ S, v ∉ S } denotes the set of edges leaving /
	crossing the cut (ble they point from a vertex in S to a vertex not in S).
	· Sin(S) = { (u, v) EE: U\$S, vES } denotes the set of edges entering S.
	→ S is an s-t cut if ses AND t & S
What is a Flow ?	$\rightarrow A$ Function $S: E \longrightarrow \mathbb{R}$ a function that gives a <u>number</u> to each edge in E(6).
What are fout () and	→ For a cut S (which could also just be a single vertex, e.g. S= Eu3), f out (S)
fin ()?	represents the amount of flow leaving S, e.g: For all edges LEAVING S, the sum
	of the "Flows" For each of those edges.
	$f^{out}(s) = \sum_{e \in S^{out}(s)} f(e)$
	- Fin (S) = 2 Fles the amount of flow entering S.
	~ When S is a single vertex, e.g. S= 2u3, we write Fout (u) instead of Fout (2u3).

What does it mean for a flow	2. Capacity (onstraints: For every edge e, the amount of "flow" on the edge
to be feasible?	is not greater than its capacity.
	• For all $e \in E$, $0 \leq f(e) \leq C(e)$
	2. Conservation . For every vertex except s and t, the amount of flow entering v = the
	amount of flow leaving v.
	$\forall v \in V$ where $v \neq s$, $v \neq t$, $f^{in}(v) = f^{out}(v)$
What is the value of a flow f?	- Defined as IFI, the total amount of Flow leaving vertex S.
	• (FI= FOUT (S)
What is a maximum flow?	→ Given LG, s, +), it is a flow fwhere fl is maximized.
What is the capacity of a cut S?	- The sum of the capacities of all edges leaving the cut.
	e(s) = 2, c(e) es 5 ⁰⁰⁴ (s)
What is a minimum s-t cut?	\rightarrow An s-t cut S s.t. the capacity c(S) is minimized.
How would you represent a flow	→ The same way we represent edges that have lengths, weights, or copecity.
in code?	$\xrightarrow{\rightarrow} E_X: \qquad \boxed{\begin{array}{c} & & \\ & &$
	For each edge. Then we would represent G as:
	G=[[(2,5)],[(0,4)],[(4,10)],[]] ond Fas:
- Fred C	$F \simeq [C(2,4)], C(3,2)], C(4,5)], C]$
	ulkerson -
What is the input and goal?	> INPUT: A Flow network (6,5,+)
	GDAL: Return a Maximum S-+ FIDW. AKA & Flow wi the may sum of all flow leaving S.
What is a simple example?	$\rightarrow \xi_X: G = \bigcup_{q} \xrightarrow{b} (2) \xrightarrow{q} (3) \xrightarrow{b} (q), S = 1, t \in 4.$
	• $F((2 \rightarrow 3))$ can be at most 4 due to capacity constraint, and $F^{in}(2)$ must = $F^{D+1}(2)$
	so $F(C2→23)$ must also be 4. Finally $F(3→4)$ will also have to be 4. • ANS : $F = [C(2,4)3, C(3,4)3, C(4,4)3, C3]$
What are some other examples?	
	$\neg G = \frac{1}{2} + \frac{2}{2} + \frac{1}{2} $
	-> G= 6> (2) 3 1F1=9
	5 3(3) 4
	- NOTE: 191 cannot possibly be greater than fin (t).

What is one natural approach	-> Use DFS (or other path Einding alg) to find a path in 6 from s-> t.
to this problem?	→ For each possible path P, For each edge (u,v) in P,
	• set Dp = min c(e), and the minimum capacity of all edges in P.
	· increase the flow of each edge in P by Dp, are fle) = fle) + Dp
	. In G, decrease the capacity of cachedge in P by Dp, so as to
	replacent the "remaining capacity" of e after we have considered a possible
	path P aka cle) = cle) - Dp
	→ Repeat above process for all Paths until we can't make any more progress.
Will this approach always be	→NO! It works if G happens to be an s-t path , but not in general.
Lorrect 7.	- why? Because once we consider one s-+ path P that isn't actually optimel,
	it affects how we treat the other paths & then our final answer too.
	. We have to be able to undo the changes made to fled and cled when we
	consider a Path P.
What is the ascertance	
What is the correct approach	→ Rather than searching for s-t paths to consider in G, search for them in
to the Ford-Fullerson problem?	the residual network Ge of G.
	· basically, use another graph Gr to track updates made offer considering
	a path P. Namely, the "semaining capacities", and the things that we can undo.
How do we Find the residual network?	a path P. Namely, the "semaining capacities", and the things that we can undo.
How do we find the residual network?	a path P. Namely, the "remaining cupacities", and the things that we can undo. → We need to Find the residual network for G, given our current "working" flow f.
How do we find the residual network?	a path P. Namely, the "remaining cupacities", and the things that we can undo. → We need to Find the residual network For G, given our current "working" flow f. - It tracks the leftover capacities & how much we can undo.
How do we find the residual network?	a path P. Namely, the "remaining cupacities", and the things that we can undo. → We need to Find the residual network for G, given our current "unorking" flow f. • It tracks the leftover capocities & how much we can undo. Residual (G,f):
How do we find the residual network?	 a path P. Namely, the "semaining cupacities", and the things that we can undo. → We need to Find the residual network for G, given our custont "wocking" flow f. It tracks the leftover capocities & how much we can undo. Residual (G, f): Ge = (V(G), Ee = Ø) → start off by having no edges in Ge For e = (u,v) e E(G): → (for each edge u,v in the og graph G):
Forward	 a path P. Namely, the "semaining cupacities", and the things that we can undo. → We need to Find the residual network for G, given our current "unorking" flow f. It tracks the leftover capocities & how much we can undo. Residual (G, f): G_p = (v(G), E_p = Ø) → start off by having no edges in G_p For e = (u,v) ∈ E(G): → (for each edge u,v in the og graph G): if flox c(e): point the flow off e is left then the real capacity of e in G.
	 a path P. Namely, the "semaining cupacities", and the things that we can undo. → We need to Find the residual network for G, given our custent "working" flow f. It tracks the leftover capocities & how much we can undo. Residual (G, f): G_e = (V(G), E_e = Ø) → start off by having to edges in G_e For e = (u,v) ∈ E(G): → (for each edge u,v in the og graph G): if fler < c(e): → if the flow of e is leve then the red capacity of e in G. add (u,v) to E(b_e)
Forward	 a path P. Namely, the "remaining cupacities", and the things that we can undo. → We need to Find the residual network for G, given our current "unocking" flow f. It tracks the leftover capocities & how much we can undo. Residual (G, f): G_q = (V(G), E_q = Ø) → start off by having no edges in G_q For e = (u,v) ∈ E(G): → (for each edge u,v in the og graph G): if flor c c(e): → if the flow of e is lete than the real capacity of e in G. add (u,v) to E(G_q) = viewould add that edge to our residual Graph set c(e) in G_q = ((e) - F(e)) ···· ··· ··· ··· ··· ··· ··· ··· ···
Forward edge	 a path P. Namely, the "remaining cupacifies", and the things that we can undo. → We need to Find the residual network for G, given our current "working" flow f. It tracks the leftover capocifies & how much we can undo. Residual (G, f): Ge = (V(G), Ee = Ø) → start off by having to edges in Ge For e = (u,v) € E(G): → (for each edge u,v in the og graph G): if fler c c(e): → (for each edge u,v in the og graph G): add (u,v) to E(be) we should add that edge to our residual Graph set c(e) in Ge = ((e) - f(e)) ··· In Ge, we chould set c(e) to be the remaining capacity. if fler > 0: ··· if we are sending flow on edge e, we account for ollowing vs
Forward edge	 a path P. Namely, the "remaining cupacifies", and the things that we can undo. → We need to Find the residual network For G, given our current "working" flow F. It tracks the leftover capocifies & how much we can undo. Residual (G,F): Ge = (V(G), Ee = Ø) → start off by having to edges in Ge For e = (u,v) ∈ E(G): → (for each edge u,v in the og graph G): if flow of e is lead that edge to our residual Graph sat c(e) in Ge = c(e) - f(e) if we are sunding flow on edge e, we account for alloving vs. if flow of e (v,u) if we are sunding flow on edge e, we account for alloving vs. if we are sunding flow on edge e, we account for alloving vs.
Forward edge	a path P. Namely, the "remaining cupacities", and the things that we can undo. \rightarrow We need to Find the residual network for G, given our current "working" flow f. -11 tracks the leftover cupacities & how much we can undo. Residual (G, f): G _g = (V(G), E _g = Ø) \rightarrow start off by having no edges in G _f For e = (u,v) $\in E(G)$: \rightarrow (for each edge u,v in the oggraph G): if fled a ciec): \rightarrow off the flow of e is less than the real capacity of e in G, we should add that edge to our residual Graph set c(e) in G _g = (e) - F(e) $-$ in G _g we should set cled to be the remaining capacity. if fled > 0: $-$ if we are sending flow on edge e, we account for allowing vs to "undo" the Change by also adding the backewards add rev to E(G) $-$ reversed edge to G _g
Forward edge	 a path P. Namely, the "remaining cupacifies", and the things that we can undo. → We need to Find the residual network for G, given our current "working" flow f. It tracks the leftover capocifies & how much we can undo. Residual (G, f): G_e = (V(G), E_e = Ø) → start off by having to edges in G_e For e = (u,v) ∈ E(G): → (for each edge u,v in the og graph G): if fler c c(e): with the flow of e is leve than the red capacity of e in G. add (u,v) to E(b_e) with the flow of e is leve than the red capacity of e in G. if fler) > 0: if we are sending flow on edge e, we account for allowing vs rev = (v,u) to "undo" the Change by also adding the backewards add rev to E(G_e) with the Change by also adding the backewards set c(rev) in G_e = f(e) - "Why? Die if we end up using (u,v) in our final flow, then
Forward edge	 a path P. Namely, the "remaining cupacifies", and the things that we can undo. → We need to Find the residual network for G, given our current "working" flow f. It tracks the leftover cupocifies & how much we can undo. Residual (G, F): G_q = (V(G), E_q = Ø) → start off by having to edges in G_q For e = (u,v) € E(G): → (for each edge u,v in the og graph G): if fled c c(e): wift the flow of e is less than the real capacity of e in G. we should add that edge to our residual Graph set c(e) in G_q = (e) - f(e) if we are sending flow on edge e, we account for allowing vs reversed edge to G p set c(rev) in G_q = f(e) - we want to decrease the amb of flow being sent on (u,v)
Forward edge	 a path P. Namely, the "remaining cupacifies", and the things that we can undo. → We need to Find the residual network for G, given our current "working" flow f. It tracks the leftover capocifies & how much we can undo. Residual (G, f): G_e = (V(G), E_e = Ø) → start off by having to edges in G_e For e = (u,v) ∈ E(G): → (for each edge u,v in the og graph G): if fler c c(e): with the flow of e is leve than the red capacity of e in G. add (u,v) to E(b_e) with the flow of e is leve than the red capacity of e in G. if fler) > 0: if we are sending flow on edge e, we account for allowing vs rev = (v,u) to "undo" the Change by also adding the backewards add rev to E(G_e) with the Change by also adding the backewards set c(rev) in G_e = f(e) - "Why? Die if we end up using (u,v) in our final flow, then

So what will Dur actual	- Very similar to our first approach, except we do not modify G and instead
ALG For Ford-Fulkerson be?	search for s-+ paths P in Gt
	-> For each s-+ path P in G = , set Ap= the min. capacity of all edges in P
	· then, argment & along P by the min. residual (apacity c (Le) over all
	edges in P Le 6 P) area, "increase" fled by DP for alledges in P.
	· then, update & by setting & = Residual (6, f).
What is the algorithm?	Ford-Fulkerson (G,S,+):
	f=[] * number of edges
	for all e E (G):
	F(e) = O
	Ge = G
	while Ge has an s-t path P:
	$\Delta p = \min_{e \in P} C_{e}(e)$
	for all e = (u,v) in P
	if e is a forward edge :
	$f(u,v) = f(u,v) + \Delta p$
	else :
	$F(v_{y}u) = F(v_{y}u) - DP$
	$G_{E} = Residual(G, E)$
	return f
Example problem?	→ (e+ G=[[(2,6), (3,5]],[(3,8),(4,3)],[(4,6)],[]] Initially, G=G and
	our first s-t path is highlighted below:
	$b \rightarrow (2) \rightarrow (4)$ $b \rightarrow (2) \rightarrow (4)$
	$P = 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$
	• $f(e)$ for $e = 1 \rightarrow 2, 2 \rightarrow 3$, and $3 \rightarrow 4 = f(e) + bp = 6$ (bit $f(e) = 0$ for all e , initially)
	→ New Residual graph Ge: 3 (2)
	1. 6 2 3
	c(e) - f(e) = 8 - 6 = 2 2. $c(rev) = f(e) = 6$ 2. $c(rev) = f(e) = 6$
	$3 \cdot f(e) = 6 \text{ is NOT < c(e) = 6, so we don't add} 5 \qquad 6^3$
	e= (u,v) to GE. We only add fev

What is the next step?	- Look for a new s-+ path P in Gp:
	$G_{\mathfrak{s}} = 6$ (2) 3
	S S b t S S
	• $f(e)$ for $e = 1 \rightarrow 3, 3 \rightarrow 2$, and $2 \rightarrow 4$:
	· 1+3 is find. edge, so f (1+3) = 0+3=3
	-3 - 2 is backward. $f(v, u) = f(2 - 3) = 6$
	· f(2-3) = 6-3=3
	· f(2+4)=0+3=3
	· F = 6 3
	→ New Residual graph &
	c(e) - f(e) = 2
What is the answer?	-> There are no more s-+ paths in G, so we return f with IFI= 6+3=9:
How can we check if our	\rightarrow Let $S = \{v \mid v \text{ is a node in G that is reachable from s in the last}$
flow value is correct?	residual graph Ge 3 alka nodes that are directly
	· A set of vertices (a cut) leachable by S from a single edge
	-> Let c(3) = the sum of the capacities of all edges leaving the cut - in the o.g.
	graph.
	-> If we solved the problem correctly, then class = 1\$1.
Example?	-) In the 5x above, here was our final G:
	$S = \{2, 1\}$
What is the RT?	→ In each iteration, the volue of the Flow, IFI, incremes by Dp (and Dp olympy, ≥ 1)
	-> So the ALG makes of most v iterations where v = value of max. flow
	"Using DFS or a similar pathfinding alg anounts to a total of O(M) time per iteration,
	so the total RT is O(mv)

6.2,6.3: Bipartite Matching; Bipartite Vertex Cover				
What is a bipartite graph?	- An undirected graph G where all the vertices in G can be split into 2 groups			
	L and R s.t. every edge in G has exactly one endpoint in L.			
	· aka every edge goes from a node in EL3 to a node in ER3			
	• No edges whose endpoints are both in the same group.			
	→ £x: 0 6 L= 21,4,53			
	R=16,2,33			
	<u></u>			
	- Given a bipartite graph, assume that we can label each vertex w/ either L or R in			
	O(m Ln) time.			
What is a matching ?	- A subset of edges where no 2 edges in the set share an endpoint.			
	• Ex: In graph above, \$ 1,63 and \$4,23 are matching, but \$1,6,2,43 is not.			
What is a use case for this	\rightarrow let the nodes in EL3 \approx kids & the nodes in ER3 \approx gifts. Each child should get at most			
concept?				
	one gift, and we want to find the Max. A & Kids who can get the gifts they want.			
	→ An application of the maximum flow problem.			
What is the input & Goal?	→Input: a bipartite graph G= (LVR, E)			
	→ Goal: Return a maximum (largest size) matching in G.			
What can we say about a	\rightarrow IF M_2 and M_2 are metchnings, the set $M_3 = M_2 \prod M_2$ is also a matching.			
matching?	· RECALL: """ = intersection = elements in BOTH x and y.			
J	\rightarrow PRDOF: $\forall e_{1}, e_{2} \in M_{2} \cap M_{2}$, e_{1} and e_{2} are both in M_{2} . This implies that			
	e, & ez don't share an endpoint.			
	· IF an edge is in M3, it is in both M, & M2, so they can't share an endpoint.			
What is the algorithm idea?	→ We want to convert this graph to a directed graph with capacitized edges -aka a flow			
	so that we can use Ford-Fulkerson.			
	2) $G \rightarrow (G', s, t)$ 2) $F = max Flow$ 3) convert E to a matching			
What are the steps to convert	\rightarrow To construct $G' = (V', C')$ from $G = (V, E)$ and $V = L \cup R$			
Ginto a Flow?	2. add s and t as new vertices V'= V U fs, t3			
	2. E consists of a set of edges, cill of which span between a node in L and a node in R.			
	So to make this directed, for every edge (u, v) in E where $u \in L$ and $v \in R$, add a			
	So to make this different, for every edge (u, v) in E where $u \in L$ and $v \in E$, add a directed edge $(u \rightarrow v)$ (from L to R) in E'. Ex			
	For all $u \in L$, add an edge (s, w) to E' .			
	For all v & R, add an edge (v, t) to E'.			

How do we add the capacities?	5. Sct cill us the new edges (e.g. those leaving 5, and those entering +) to have c(e) = 1
	6. Set all us the old edges (e.g. those going from L→R) to have capacity c(e)=n= to of
	vertices in o.g. graph.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
What do we do now?	-> Run Ford - Fullerson to find the maximum flow !
What is the Algorithm?	Then, return all the edges in G where F(c) > D (aka edges that F sends Flow" on).
	Bipartite-Motching (G): G'= (V'=V, E'=E)
	direct every edge in E'from L to R
	For all e E E :
	c(c) = n (axo v(c))
	add s, t to V'
	for all u E L:
	add (s, u) to E' with capacity 1
	For all v E R :
	add (v,t) to E' with capacity I
	F= Ford-Fulkerson (G', s, t)
	return M= E all e E E' where F(c) = I]
What is the RT?	-> Constructing G' and M takes Olmenz-time
	- Running F_F on (67, s, t) takes O(min)-time
	- TOLAI RT = D(M-n)+ O(Mn) = O(Mn)
- Bipar hite	e Vertex Cover -
RELALL: What is the capacity	- The sum of the capacities of all edges leaving the cut.
of a cur?	$e(5) = \sum_{e \in S^{DW}(5)} e(e)$
BLALL: What is a minimum	\rightarrow An s-t cuts s.t. the capacity c(s) is minimized.
5-4 604]	* A subset S that includes {53 and excludes {23
	• The max Flow IFl ≤ c (S) For an s-t cut.
What is the max-flow-min-cut	→ The max. Flow value over all feasible s-t flows for a graph G , IFI , is always going to
theorem?	be equal to the capacity CLS) of the 5-t cut S with the minimum capacity.
	• max IF(= min c(5) s-r wts s

How can we Find the minimum	Vising Ford-Fulkerson!
S-t cut us a flow?	• Run F-F to Find the maximum flow of a flow network
	· The set of vertices reachable from s in the last Residual Graph Gr is
	actually our min. s-t cut!!
	· Simply run BFS (last Residual Graph, S) to return the set of all nodes reachable
	400 <u>5</u> .
What is a vertex cover?	-> (VC) given a graph G, a vertex cover is a cubicet S of vertices s.t. every edge in
	G has at least one endpoint in S.
	→ Ex: 0 6 are both VCs of this graph. Every
	and and edge touches anode in S.
	5= 51, 4, 53 5= 51, 4, 33
What is the Bipertite Vertex Cover	-> Input: a bipartite graph G= (LUR, E)
problem?	→ G Dal: Return a minimum vertex cover of G (exa least ant. of vertices possible)
How do we solve this problem?	→ Using Ford Fulkerson! We want to use the minimum s-t cut find able using F-F,
	and construct our max V-C from it.
	2) Convert & into (6), s, +) Following the same process as that in 6.2
	2) Run Ford - Fulkerson on G', s, t
	3) Let Ge = the last Residual Graph given by F-F. Run BFS on (Ge, s) to
	Obtain all nodes reachable by s in G_{c} . This becomes our $S =$ the minimum s-t
	ut in G.
	4) Convert S into our Final answer, the min VC in G.
How do we use the min. s-t cut	- Given the b.p. graph G, with sets of nodes L and R, AND given our min. s-t cut S,
to obtain the min. VC?	the set of nodes representing the min VC is :
	· All of the nodes in L which are NOT IN S (axa L-S aka L/S, formally), AND
	· All of the nodes in R which are ALSO INS (ava R N 5)
	→AKA: Ans= (L\S) U(R ∩ S)
Example?	\rightarrow G = 0 and G' = 10 b 0 1
	-> A Cter running F-F, our last Residual Graph is:
	\rightarrow Nin s-+ w+ = BFS(Gr,s) = S = $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ \frac
	→ (L15)= {1,4,53. (RAS)= {3
	-> ANS: VC cover = 21, 4, 53

What is the RT of Min	-> Algis almost Identical to 6.2, so RT = O(mn)
Vertex Lover ?	
SUMMARY . How did we solve	- To solve bipartite matching , instead of solving it directly, we converted
problems 6.2 and 6.3?	it to a diff problem - finding max flow - and translated the answer to get
	DUE SOLVEION.
	· AKA, we reduced max. bipartite matching to max. Flow
	-> To solve min. vertex cover, we reduced it to minimum s-+ cut.

Ch 7: NP Hardness

What have the previous chapters - Strategics & patterns for solving problems in polynomial time.

been about?			
BCCF. WOULT .			
What is ch.7 about?	- Showin	g that a problem cannot be sol	ved in polynomial time
What does it mean for a problem		t know if it can be solved in p	
to be NP-hard?			Found an algorithm yet. And we believe
		nel- it probubly con't.	
How do we prove that a problem			d <u>B</u> be 2 "decision problems". When
is NP-hard?			nost as hard as B", and "B is at least
	ashara		
	• 0.1	.ca, comparing the relative diffi	icultics of various problems.
Why is this companison meaningful?			ex, problem A is actually hard (not just
3), then it proves that B is also h	
What is a decision problem?			+ specification, and a yes/no problem Q.
	• As 00	posed to optimization problems	, like LIS, Knapsack, MST, etc. etc., where
		output is a specific solution.	
How do we translate optimization	- By int	roducing an additional input K, c	and asking if the optimal value is at
problems into decision ones?			or at most k - for maximization problems.
	-> To solve t	the "decision version", you just colve	the optimization version & compare the output to k.
Examples?		Optimilation Version	Decision Version
	LIS:	· Input=list A	·Input : (A,K)
		· Output = length uf LIS in A	• Q = 1s the length of the LIS in A = K?
	MST :	•Input : graph G	lnpv+: (6,)
		·Output : weight of the MST	$Q = 1$ s the weight of the MST in $G \leq K$?
	011 Knap	·Inpl+: (v,w, B)	· Input: (V,W,B,K)
	sack:	"Output: max value to fit	• Q = is the value of the optimal solution
		in backpack	<u>></u> k?
	Maximum	· Input: (6,5,4)	· INPUT: (6,5,5,5,K)
	FIDW :	·Output: value of max Flow	Q = is the value of the max s-t Flow
			≥ K ?

7.1: Reductions, P, and NP

What is the class P,	-> The set of all decision problems that can be solved in polynomial time
informally!	P = {A A is a decision problem that can be solved in poly-time }
Example problems in P?	→ LIS, MST, bipartite matuning, vertex zoner, etc.
	\rightarrow For Ex: given an array A and an integer K, we can determine whether A has
	an increasing subsequence whose length is 2k in polynomial time.
what is the class NP informally?	-> The set of all decision problems that can be solved using brute force.
	· aka pretty much every problem we look at, including every one we
	will look at in this clase.
	-> NP = nondeterministic poly time
What is known & not known about	-> KNOWN: All problems in P are in NP PGNP
the classes P & NP?	- UNICNOWN: IS P=NP? AILA, are all the NP-hard problems actually easy, but we
	haven't solved them yet?
	We believe P = NP, but we don't know
How do we prove that a problem	-> A reduction:
Is not solvable in poly-time?	2. Imagine problems A and B. We KNOW already that A &P (not poly-time
	Solvable). We don't know about B
	2. Assume For contradiction that BEP & has a polytime algorithm, ALG .
	3. We "reduce" every input into problem A into an input to problem B s.t.
	· Any lovery time the input would be accepted by A, the transformed input is
	also accepted by B.
	· Any time the input would be rejected by A, the transformed input is
	also rejected by B.
	-> To specify the nature of these "input transformations", we have to write an algorithm
	that takes ANY input of A and converts it to some input to B s.t. the rules above
	lin step 3) are sufisfied.
	4. Now that we have this alg, instead of using our normal, brute Force, NP hard alg
	For A, we colve inputs to problem A by first "transforming" the input, then
	running it through ALGB, then outputting the answer given by ALGB.
What is a polynomial time	" An augorithm that does the "input transformation" described above, but specifically
(eduction ?	in polynomial time
	- Formally: an alg f that transforms every instance X of A into an instance FLX) of B
	s.4. X is a "yee" instance of A iff. F(x) is a "yes" instance of B.
	→ A & B % A is polytime reducible to B.

How does a poly-time reduction	-> Take the ex from prev. page, where we know that A is hard & want to prove that
prove that a problem is hard?	B is hard.
	- By absuming that B has a poly-time alg, we were able to create a polytime
	reduction that maps all A-inputs to B-inputs and prove that A = B. Using this
	poly-time alg, we were then able to actually solve A in polynomial time:
	ALG (X):
	y = transform _ input (x) 6 = a pory-rime transformation
	return Altobly)
	- However, we already know that A can't be solved in poly-time, so the above can't
	actually be possible. Therefore, B must also be herd. Otherwise it would mean that A
	is easy, which it isn't.
RECAP: What does it mean if	$\rightarrow B$ is at least as hard as A
A = B is true?	- IF A is hord, then it implies that B is hard.
	- IF B is easy, then it implies that A is easy.
RECAP: HOW do we prove that	\rightarrow Describing a polynomial -time algorithm $f: A \rightarrow B$ that satisfies the Following:
ALB?	2 Forward direction: IF X is "yes" inst. of A, F(x) is a "yes" inst. of B.
	2 · Backward direction: IF FLX) is a "yes" inst. of B, X is a "yes" inst. of A.
What does it mean if a problem	- For all problems 26NP , 26 B (alca a polytime alg for B would allow
B is NP-hard ?	us to solve every problem the NP in poly time)
	"To show that Bie NP - hard, we just have to choose some publicin cliendy "known"
	to be NP-hard, and reduce it to B, area A < B for some A < NP.
What does it mean if a problem B	-> Bene AND B is NP-bard.
is NP-complete?	
Summary: What are we doing	- We want to show that a problem B is hard. But we can't do that, so instead,
in this chapter?	We say that B is "at least as hard" as some other problem A. And we
	prove this by proving that $A \leq B$, by giving a polytime reduction $E: A \rightarrow B$
	$\varphi \colon \mathbf{A} \to \mathbf{G}$.

7.2: Independent Set	to Vestex Cover
What is an Independent set?	- For an undirected graph G, an "independent set" is a subset S of nodes s.t
	none of the edges in G connect 2 of the nodes in the subset
	i.e., none of the nodes in S are directly connected to each other.
	> For ex, O, then S= 2, 2, 3, 43 is an ind. set ble for every
	Then $S = \{2, 2, 3, 4\}$ is an indust ble for every if $G = (32)^2$ edge of $G = \{2, 2, 3, 4\}$ (upper V V R S) is true.
	i.e., there are no edger connecting v=1,2,3,or4 to one
	another.
What is the Independent set poblem?	→ Input is ((5, k) where the input is an undir. graph (5 and k= an integer
	-> Problem Q: Does G contain an independent set of size at least k?
RECALL: What is a Vertex Lover ?	> For an undirected graph, a "vertex lover" of that graph is a
	subset of nodes survives where every edge in G touches one of those
	nodes. For example, if G =
	, then S= 21, 3, 43 is a vertex cover bil every due to uches either v=1, v=3, or v=4 (or both)
	but $S = 21, 23$ is not.
What is the vertex cover problem?	-> Given (G, K) : Does G have a VC of size at most K nodes?
What is the goal ?	-> Prove that VC is NP-hard by showing that 15 2 VC
3	· area, write a poly-time alg f that converts every input to 1.5. into an
	input to VC S.t. X E lang. 15 i.F.F. FLX) E lang. VC
What is our poly-time reduction	-> F(G,K) : Given (G,K) jrewin (G,n-K).
any F?	
	Independent_Set (6,K): N= f(6,K)
	Y = F2G3K2 (etuin Verker-Cover (Y)
How do we prove the correctness	-> To prove this, we must prove the forward & backward directions. For ex, to
of an alg F?	prove that f above is correct: 27 Forward: if x = (6,x) is a yes for 1.5., prove that
	FLX) = (U,n-12) is a yes for V.C.
Why Aous this work ?	2) Backward: if x = (b, k) is a no For 1.5. prove that f(x) = (b, n-k)
	is a no For V-C.
	· ALTERNATIVELY, show: if FLx>= (6, n-xe) is a yes for
	VC, prove that x = (6, k) is a yes for is
	his one is usually easier to prove.

What is the forward-direction	> IF (6, K) is a "yes" inst. of 15, then 6 has an ind. Let S where 151 2K.
Proof For 1.5. 2 V.C. 9.	\rightarrow $F(t) \rightarrow t_{1} = 0$
	3 (1, 1, 1, 2, 1, 2, 3, 3, 3) 3 (1, 2, 3, 3, 3, 3) 3 (1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
	\rightarrow 1 f \leq is an 1.5., that means that none of the edges that touch a node in S
	touch another node in S. SO , every edge touching a node in S is also touching
	atteest one node in G that isn't in S.
	- None of the edges "in" S connect the nodes to one another. Therefore, if
	we let X = 2 v v is a node in G and v & 53 - also every node not
	in S, aica V(6) - S - then X has to be a vertex cover of G because
	the edges touching nodes in X will cover, by defin, every node in X. But
	they will allo cover every node in S ble the nodes in S must be connected
	to the graph somehow
	-> SUMMARY: For (6, 12), if a clepted by 15, then we can find a vertex cover
	of at most V(6) - ve avec n-ve nodes. Thus (6, n-ves is accepted by VC.
What is the backward-direction	
proof for I.S. EV.C. ?	$\rightarrow EX: let G = 3 and n-k=4. Then (G_3n-k-) is a "yes" of 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$
	-> IF G is a "yes" of VC, that means] a VC S of G where ISI & n-K
	-> The complement set S'= V(S (aka every node not in 3) is an 13 of 6 and
	1512K. Therefore, (6, K) is a yes for IS.
SUMMARY: What does this proof	
imply?	→ Independent Set ≤ Vertex Cover .16. T ≤ is back which we think it is then U. is also back
	· IF I.S. is hard, which we think it is, then VC is also hard.
What are some properties of	2. Reflexive: for all problems A, A = A
poly-time reductions?	• Why? Because FLX)= X is a correct reduction from A to A. e.g. the alg just
	2. Fransitive: Sans returned by H.
	2. Transitive: For all A, B, C, if A = B and B = C, then A = C
	"Why? To reduce A to c wild simply call the function f to transform A's input to
	a B-input. Then, transform that B-input to a C-input. Then, run the input through
	ALG, & return the ave.
What is NOT a property of polytime	\rightarrow Symmetric: for all A, B, if A \leq B, if does NOT necessarily mean that B \leq A.
reductions?	· For ex, VC = Halt , but Halt , is NOT reducible to VC.

1.3: 3-SAT to Independent Set

RECALL COMP 455: What is the	→ A set of a bodlean variables {x, , x2, × n3, and
3SAT problem input?	-> A set of l clauses, where each clause is a boolcan expression consisting of exactly
	3 literals OR'ed together.
	A "literal" = a boblean var OR its negation, e.q. E, , K, , Y2, X2 , etc.
What is the problem Q?	-> Let L = a boolcan expression where each clause in the input is AND'ed together.
	• Ex: variables = $\{x_1, x_2, x_3\}$ and
	$(a) = 2 \left(X_{1} \vee X_{2} \vee X_{3} \right) \left(X_{1} \vee X_{2} \vee X_{3} \vee X_{3} \right) \left(X_{1} \vee X_{3} \vee X_{3} \vee X_{3} \vee X_{3} \vee X_{3} \right) \left(X_{1} \vee X_{3} \vee X$
	$\text{Then } L = (x, \sqrt{x_2}\sqrt{x_3}) \land (\overline{x}, \sqrt{x_2}\sqrt{x_3}) \land (\overline{x}, \sqrt{x_2}\sqrt{x_3})$
	→ Q: is there an assignment $\mathcal{L}: \{x_1, \dots, x_n\} \rightarrow \{T, F\}$ (alco an assignment)
	of each variable to either T or F) s.t. Levaluates to True?
	3SAT = 2 < 4 > 1 4 is a schisfiable Boolean Formula 3.
	·Ex: Yes, because x,=T x2=F x3=T lets L=True
	-> Basically , an assignment to each variable s.t. For each clause , at least one literal
	in the clause = T
	$(\chi_{1} \vee \chi_{2} \vee \overline{\chi_{3}}) \wedge (\overline{\chi_{1}} \vee \overline{\chi_{2}} \vee \chi_{3}) \wedge (\overline{\chi_{1}} \vee \overline{\chi_{2}} \vee \chi_{3})$
	$(T \lor E \lor E) \land (E \lor T \lor T) \land (E \lor T \lor T)$
Why is the 35AT problem	- Because the Look - Levin Theorem proves & states that , by definition le.g.
significant?	NOT using a reduction), that 35AT is NP-hard.
3	·It is a known NP-hard problem.
	→ Therefore, any problem that we can reduce 3SAT to, we can then assert that
	it is no-hard.
	e.g., we will prove 3SAT ≤ 15, which proves that 1.5. is NP-hard.
	· We already proved that is $\leq VC$, so this will also implicitly pore that VC
	is NP-hard.
What is the goal?	-> Prove that is NP-hard by showing that 3SAT = 15.
	→ RECALL: 1.5. = { (6, ×) 6 has an Ind. set of size ≥ K5

What is our poly-time reducti	$ \rightarrow \in_{X} : _{ex} L_{=} (x, \sqrt{x_2} \sqrt{x_3}) \cap (\overline{x}, \sqrt{x_2} \sqrt{x_3}) \cap (\overline{x}, \sqrt{x_2} \sqrt{x_3}) $
۴ ٦.	-> f(3SATinput):
	2) For each cloure C; , add a "triangle" to 6 by creating one vertex per
	literal in C; and connecting the 3 vertices together.
	• Thus, if there are & clauses, G will initially nowe 31 nodes and 31 edges.
	$\overline{(x_1 - \overline{(x_3)})}$ $\overline{(x_2 - \overline{(x_3)})}$ $\overline{(x_2 - \overline{(x_3)})}$
	2) Add "conflict edges" : For every node V in G, add an edge between v and
	all nodes whose associated literal is the negation of v.
	G
	$(\overline{x_1} - \overline{x_3})$ $(\overline{x_2} - \overline{x_3})$ $(\overline{x_2} - \overline{x_3})$
	3) Let K = l = the number of "triangles" also the number of clauses.
	47 Return (G,K)
What is the forward direction	→ 1f input is a "ycs" for 3SAT, when 3 on assignment 4 that satisfies all
proof?	clauses
f	• Ex: in ex above, y = Ex, = T, R2=F, R3=T } satisfies all clauses
	> For each triangle in G, say that we pick any literal in the triangle that evaluates
	to true, and addit to our independent set.
	$\cdot \in X$: (\overline{x}) (\overline{x})
	-> this selection S obviously has size ≥k.
	→ S is an independent set because:
	We only choose one node from each triangle, so obviously the edges connecting
	each triangle won't interfere with our independent sent.
	• The conflict edges are also not an issue RECAUSE we assigned each literal to T or F.
	And for each triangle, we added a likeral that evaluated to I to our 15 5. IF a likeral
	b eval. to true, then it may have "conflict edges" to all nodes " 5". But since
	" " b" would then eval. to felse, we would only ever hume one of b or b in our l.s.,
	ble they can't both be true.

What is the backward direction	\rightarrow IF we have an IS of size K=1 where the nodes are literals,	and this input
proof ¹ .	(b, x = l) was a "yes" inst. of Independent Set:	Gz
	We can use this graph & the 15 S	
	(in this ex, 5= 52, 72, × 33) to construct	Y Y
	x "vec" jost-mie of 2SAT	K2 K2

e: x,= T

· For each literal in S, set it to be TRUZ in the boolean assignment Y:

x2=T SO 22=F

k3 = t or F, it doesn't matter

- We can prove that this is a satisfying assignment for 2 reasons:

2) The assignments will not contradict each other, ble given the fact of the "conflict

edges", if S is an 15, it will not contain both b and b for any iteral b.

· aka " Y is well defined"

2) the assignment satisfies every clause ble each triangle represents a clause, and each

triangle adds at least 1 node to 5.

1.4: Vertex Cover to De	ominating Set
What is a dominating set?	-> A subset S of vertices s.t. for all nodes u e V, u is either in S, or u has a
	neighbor in s
	· Basically "covering every vertex", unlike VC, which tries to "cover every node".
	$\rightarrow 6x$: $S = 52,43$ is a dominating set.
	30
What is the Dominating Set problem?	-> Input: (6, K)
	-> Problem: Does & have a dominating set of size at most k?
	e.g., with 1 nodes, can we "cover every vertex" ?
RELALL: what is the Vertex Lover	-> For (6, x), Docs & have a VC of size at most k noder?
problem?	-> Vertex Lover: Subset & of vertices s.t. every edge has at least 1 endpoint in 5.
What is the goal?	-> Prove that DS is hard by showing that Vertex Cover < Dominating set
	· Given a "yes" instance of VC, write a poly-time function to output a
	"yee" instance of DS.
Why can't our function FCG, IC)	-> Returning the VC input almost satisfies the forward direction : IF & has no
just return (Gyr)?	isolated vertices (e.g. every node has ≥1 edge), then a Graph w/ a VC of
	size K will have a DS of size K.
	• But if G has isolated vertices, like •, then it could be a yes for
	VC but a no for Ds.
	-> This reduction also doesn't satisfy the back ward direction:
	G= Where K= 1 would be a NO for VC, but a yes for DS.
	6
How do we solve this problem?	→ Intuition for reductions: "A ± B" ≈ Solve A given a 'solver' for B.
	- Given a "solver" for Dominating Set, we need to turn our graph & - which covere
	k edges -into a graph G' which covers k nodes.
	· Somehow convert every edge to a vertex?
What will be our polytime	"Liven G, construct a new graph G'= G, initially. Then, for each edge e & E(b):
reduction <u>F</u> ?	- add a new verter xe to G'
	· add the edges (u,re) and (v, re)
	> Intuitively, we are placing a new vertex "next to" each edge s.
	Set K' = K + (I(G)), where I(G) is the set of isolated vertices in G.
	3. Reven (G', K')
	K=1 G'= K=1 (no isolated vertices)

What is the forward	-> Given a yes" instance of VC, let S be a vertex cover of G s.t. ISI Ex.
direction proof?	-> We claim that S' = S U I(b) will always be a dominating set of G'.
	• aka, for any vertee u & V (G'), u 65' or u has a neighbor in 5'.
	→ Why can we claim this?
	2. If u & I (b) (the isolated vertices in G) or u e S, then obviously u e S.
	2. IF ueveb) and u #5 - alca, an "old" / og verter from graph & that
	wasn't in the V.C. S, then u has at least one neighbor in S because
	we know that S is a VC of G, meaning cilledges attached to u must be
	"concred"-meaning that at least one neighbor of u it in 5 and therefore
	3
	3. If us V(G) and ugV(G)-alea the new vertices added in the reduction :
	· Given a "yes" instag VC, we know 3 set 5 which covers alledges (ake one
	endpoint of every edge is in 5)?
	· All the new edges are added "along" exististing edges. Since we know that
	those edges are covered by no derins, the same nodes in Swill and uptouching
	every nunvertex the added:
What is the backwards direction	→ let S' = (G', K + II(G)) be a "yes" instance of DS, where S' is a DS of G'
proof?	where size is a nodes.
	· We can't just claim "S' is a VC of G" like we did in the Find. proof, ble G
	has vertices that G doesn't and those could be in the DS S'.
	→ We will convert S to a subset S of nodes in G, which is also a VC of size k.
	This will prove that "yes" instances of DS (F(VC-Input)) (running DS with the
	transformed inputs given by the reduction) correspond to "yes" instances of VC(K-Input)
How will we convert 5 to 5 ?	2. Shart with $S = \emptyset$ (empty)
	2. For all u in S':
	"if ubvich, add uto S
	· otherwise (if u is a new vertex added by the reduction) : addeither neighbor
	04 u to S.
	· 16 u is in ILB), do not add it to S.
	-> SKIPPSD: Thest of backward proof showing why "S' is DS of G" => Sisa VC of G"
What is true about the Domset	> Domset 6 NP (notsolvable in polytime, but is brute for Lable)
and UC problems?	- VC & NP-complete (aka VC ENP AND VC & NP-hard)
	• TVP-Hard = every problem in NP reduces to VC.

1.5: Directed to Undirected Hamiltonian Cycle

RELAP: Whet are we doing in	- We want to show that a problem B cannot be solved by a polynomial-time
chepter 7?	algare that B GNP-Hard
	-> We can't actually prove that , but if 3 a problem A that is believed to be NP-Hald,
	and we can show that $A \leq B$ (A is poly-time solucidic given a "solver" For B),
	then we can prove that B is at reast as hard as A.
What is the DirHamCycle problem?	-> Input: Directed graph G. Does 6 contain a Hamiltonian cycle (a cycle
	that visits cach node exactly once)? Ex "no" instance ():
	EX 'Yee" instance G: 0 0
What is the Hamcycle problem?	-> Input: Undirected graph G. Dies G contain a Hamiltonian cycle?
What is the goal?	> Prove that Hamayule is at least as hard as Dirthamayule by proving
	Dir Ham Cycle & Ham Cycle
How do we construct our reduction	- Given a Directed graph G, if G has a HC, return an Undir graph G' that has
£j	a Hum Cycle.
	$\rightarrow \epsilon_X: c = 0$
	- REDUCTION: Construct G' as follows:
	1. For each node u e V (6): add 3 nodes { u; , u, u our 3 to G'.
	() () () () () () () () () ()
	2. For each node usv(6): add 2 edges (uin, u) and (u, uout) to G?
	Laka, every vertice yets replaced by a path of length 2
	() - U- () - () - () - () - () - () - ()
	67- 63- 67- 63- 63- 63- 63- 63- 63- 63- 63- 63- 63
	3. For each edge (u,v) & E(G) (in the og graph): Add the edge (uout, V in)
	to G'. "u out," represents the node sending out-neighbors from "u".
	6) 50
	$\textcircled{\begin{tabular}{c} \hline \hline$

What is t	he forward	direction	→ IF & has a dir. Ham cycle C, we can construct a HC C' in G' by simply
PROOF 1			Following C, but instead of jumping from node u to node v and so
			on, we "enter" a node at uin, then u, then u out, THEN Vin For the next
			vectex in C , and so on.
			· C goes u - vour - vin - v every time C goes u - v
			$\rightarrow \in X$: $\bigcirc \bigcirc $
			$() = 1_{in} \rightarrow 1 \rightarrow 1_{out} \rightarrow 2_{in} \rightarrow 2 \rightarrow 2_{out} \rightarrow 3_{in}$
			-> Sour -> lin
			to to too to too
			6-0-60
			(H) (H) (H) (3) (3) (3)
What is t	the backwa	rd direction	-> Suppose G' has a Ham Cycle C'. Like
brootj			-> considur any vertex u & o.g. graph G In C, there
			Must exist a subpath (Vin, V, Vour). After 31 33
			visiting your, C'must visit some vertex Vin. It Must go to v, vour after
			they, consecutively.
			-> Therefore, we can construct a HC (in G by taking (and removing every
			vartex not in G lave the "in" and "out" witeres)
			· 6x above: C' = 1 = 1 = 1 = 1 = 1 = 2 = 2 = 2 = 2 = 2
			• SO C= $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$, which is an HC in G: $0 \rightarrow 0$
			(nondeterministic polytime) NP-Complete NP-Hard in polytime
RECAP of	P CN.7 ?		NP NP-Hard PolyLine
			P ·SubretSUM ·LIS ·3- Loloring ·3SAT ≤ IS ≤ VC ≤ DomSet
			·MST ·SSAT & LS & VC & Domst
			·D/I Knapsack

→ 3-SAT has been proven NP-Complete/Hard WIO a reduction (look-levin thm.)

<u>Approximation Algorith</u>	
What's the deal w unsolvable	-> For many problems (like 3SAT, VC, etc.), there probably is no poly-time alg
problems?	to solve them
	· We don't know, bic we haven't found one yet. But maybe.
	These problems are in NP or NP-hard.
But what if we still need (101)	
to solve them?	• optimality (accuracy of ans)
What are approximation algorithms?	- Algorithms to solve hard problems within polynomial time, by sacrificing
	optimality (ability to ALWAYS yield the exact correct answer), & instead delivering
	an approximation.
	- Approximation algorithms:
	· Don't always return an optimal solution - but often quite close
	· Always run in poly-time
What is a a-approximation	· Are relatively simple
	→ For a given problem, such as a minimization problem, let OPT denote the true, actual
algorithm	optimal solution. Let ALG denote the solution given by the Approx. Alg.
	> DEFN: a d - approx - and for a given problem always returns a solution whose
	value ALG is within a factor & of DPT.
What does this mean for minimization	→ Minimilation →
vs maximization problems?	There exists a $\alpha \ge 1$ s.t., on every instance of the algorithm,
	OPT 4 ALG 4 VOPT
	+ 2.g., a 2-approx alg returns a value ALG that is at most 2.0PT away from the
	right answer
	-> Maximization:
	There exists a & < 1 S.t. , on every instance of the algorithm,
	OPT > ALG > X · OPT
What is the approximation ratio	\rightarrow The smallest value of α s.t. the algorithm is a proven α' -approximation algorithm.
of an algorithm?	→ To prove an al-approx alg's correctness, show that the alg satisfies one of the
	2 inequality statements above (depending on the type of the problem) - on every instance.
	- e.g., a 2-approx alg is also a 3-approx alg, but the retio is 2 bla that the smallest
	possible.

- 8.1: Ver	tex Lover -
0.55	
RECALL: what is the VC problem ((not decision type)	→ A minimization poblem: for a graph G, return the smallest possible VC : ave a
	subset S of V s.t. for all $e \in E$, e has at least oncendpoint in S
What is our goal?	-> Describe a 2-approx alg for VC : The alg returns a subset of nodes ALG s.t.,
	For any graph G, IDPT (G) 1 < IALG (G) 1 < 2.10PT (G) 1
	· Ake, IALUI is at most 2x the size of OPT, IDPTI.
	For $e_{x_1} \in G = 0$, $bpr1 = 2$ and $2 \leq A G \leq 4$
	<u>3</u> — <u>(b)</u>
What will our alg be?	- A Greedy algorithm: For each edge e & G , add both endpoints of e to S ,
	and remove the endpoint vertices Eu, v3 from G. Repeat this process until G
	has no edges.
	• NOTE that when we remove a vartex a from a graph, we also remove
	all edges towaring u.
	NC-Matching (Gs K):
	S= empty set
	while 6 has an edge c= zu, v z
	add u to s
	add v to S
	remove a and v from 6
	REPORT &
How do we prove its correctness?	→ Prove the Theorem: For all possible G, IALG(G) = 2.10PT(G)1
	-> Proof: Consider the set of edges "chosen" by ALG (and the edges that we actually
	"look at " before removing its endpoints , as opposed to edges that get automatically
	deleted when we remove a node u from G).
	• Those edges form a matching M: a subset of edges s.t. no 2 edges in M share
	an endpoint. Fores:
How do we know that the set	
	→ When we consider an edge, we remove its endpoints — meaning thet we automatically remove
of edges considered is a Matching?	every edge that would share an end point with it !

· Edger considered :

4

ιV

5=23

4 6 8 S= {1, 23 S= {1, 2, 4, 63 5= 21,2,4,6,5,83

0 50

→

'0

 \rightarrow

Ъ

Ъ

What do we know about the	-> IDPTI > IMI : OPT has at least IMI nodes, because OPT must be a subset that
OPT subset VC for a graph G?	Covers every edge, and the edges in M share ND nodes; there's no overlap. At
	leave tone endpoint of each e & M must be in DPT.
	·Where M = the maximum matching of G.
What do we know about the ALG	-> In the alg, we add 2 nodes for each edge considered. We have already shown
subset returned by our alg?	that alg considers at most IMI edges. Therefore, we add at most
,	2 × IMI nodes to our subset ALG in our algorithm.
How does this come together	\rightarrow IAUGI \leq (2.1MI) \leq (2.10PTI)
to prove that our approx. alg	or "=" according to the because IMI = IDPII!
is wirect?	Vecture but id k
- 8.2: Los	ad Balancing -
What is a scheduling problem?	-> We have n jobs and n machines, and we need to assign each job to a
	Madnine.
	→ Svery job has a corresponding length & Cn]
	-> For a given jobs - to - machines assignment , for each machine m , the load on
	m = the sum of the lengths of every job assigned to m
	- For a given jobs - to - machines assignment, The makespan of the assignment
	is the maximum load created by that assignment - aka, the load of the machine
	WI the heaviest load.
What is the Load Balancing	-> INPUT: (l, m), where l is an array of size 1; l(i] for i=1, is the
problem?	length ut job i.
	And m = the & of machines.

(minimize the max load)

-> EX: if l = [3, 1, 2] and m = 2, the OPT solution is to assign job 1 to one machine, and jobs 2 & 3 to the second machine: jobs: 3 [1]2]

→ The Decision -version of this problem le.g., $M_{,} \Rightarrow 3$ Maxespun=3 given L, m, and a makespan $k, does there exist <math>M_{2} \Rightarrow 2$ 1

an assignment s.t. the makespan <k?) is NP-Hard.

What is our goal?

→ Describe a 2-approx Algorithm for L.B.: Onevery instance of (1, m), the makespan MALL of our assignment ALL returned by the algorithm should be at most 2. Mopt

nat is	סטר	algorithn	νĵ	->	Gree	dy:	for e	ach	Įор	<u></u> ,	pick	the	macl	nine	Mi '	nl th	د دە	(CCN7	smal	1c1+ 1	DAD	an
					0.5	sign	j 40	5 m	.i		_	- 019	buith	m to	return	n vai,	of m	akesp	an			
						Loue	-Bal	ancia	ng (1	.m	-											
							min.															
								lex =		707	* M											
											1,	. 1										
								for	1 10	ran	ge 2.	· · · ·	w:									
									16 6	nachi	nes Ci	י> ר	min-l	oc d	١							
										Min.	-1000	- ma	chine	Ci J								
										inde	LK 12	t										
									01/010		3+=		iph7									
											= m:											
votis	an	online	algorithm	<mark>~</mark> ?. →	Ana	194	vor cen	n ma	rke it	rs fi	nald	ecisi	005 5	k dct	ermin	ne an	ansh	kr 4	lo Kr	nowin	g Wha	<i>2</i> f
					the 6	-0405	c hold	ds.	This	مام	is ar	n exa	(mple	-								
What.	theor	em dow	c have to pr				the w			-					alg-	Whic	sn we	וו נכוו	τ, is	<u>د</u> د	2.0	PT
for	رەررە	ictness?		-	Proof	•																
				Ð	OPT	-the	+rve N	ninim	ici) Mo	ikes p	n -	is a	4 /ون	st 4	ne su	ъ m	all a	the l	o ads	F 411		
				Ð			trve n							SF H	he si	መማ	all a	the l	oads o)F લા I		
				\$			ivided	x by	the t	4 of-	mach			19 F H	ne si	ым ef	all e	the l	oads o	iF all		
				\$				x by	the t	4 of-	mach			(7 F H	ne su	9W &	all e f	the l	oads o	0F al I		
				(b)		o∽,d	ivided DPT	х _{Бү}	the 1	4 of 1 l C 1	.j., Mach	1045	m `:									
						o∽,d	ivided	х _{Бү}	the 1	4 of 1 l C 1	.j., Mach	1045	m `:								יוא פענ	
						o∽,d	ivided DPT	х by ; <u>2</u> stein	the deal of	4 0F 1 l C 1 435ign	went []] wach	10<()	m : Id be	0ne v	where	<i>We</i> co	n spl	it the	. jobe	Even		
						o∽,d • The M(ivided DPT absolu	2 by ; <u>2</u> s <u>s</u> .	++ne 4 <u>j</u> =: acal € +. e	4 of 1 M Assign	went 1]	ink(1 Noul	m : lot be s the	0ne v	where	<i>We</i> co	n spl	it the	. jobe	Even		
						o∽,d • The Ma	ivided DPT absolution activition Small	4 by 5 <u>2</u> υτεία 5 5.	++ne 4 <u>j</u> = deal 6 +. en jakes	t of l l C hissign e.ch r open	Huach Machir Mach	ines Nour Ye he	m : lot be s the t.	one v Sum	where he l Da	we co .d. 0)	n Spl Lviou	it the sly, w	. jobe e can'	Even 't pot	ددنهام	y h
						• The Ma a • E	ivided OPT absolution achine Small g., if	λ by : <u>2</u> 	++~ + ↓ acal a +. en a\cess ∑ ↓ ↓	4 0F 1 2 C 1 435ign 2435ig	mach 1 ment Hran 20	incs 1 4001 20 hc- 4401	m : lot be s the t. d wc	one u sum have	shere ne loo 5 ma	we co od. Ol achin	n Spl Lviou ee, H	it the sly, w nc ma	. jobe e can' (cespe	even 't po! in is '	ssibly 2015	, h = 1
						• The Ma • E a+	ivided OPT absolution small g., if <u>mini</u>	A by 2 3 S. er m	++~ + ↓ acal a +. en a\cess ∑ ↓ ↓	4 0F 1 2 C 1 435ign 2435ig	mach 1 ment Hran 20	incs 1 4001 20 hc- 4401	m : lot be s the t. d wc	one u sum have	shere ne loo 5 ma	we co od. Ol achin	n Spl Lviou ee, H	it the sly, w nc ma	. jobe e can' (cespe	even 't po! in is '	ssibly 2015	, h = 1
						• The Ma • E a+	ivided OPT absolution achine Small g., if	A by 2 3 S. er m	++~ + ↓ acal a +. en a\cess ∑ ↓ ↓	4 0F 1 2 C 1 435ign 2435ig	mach 1 ment Hran 20	incs 1 4001 20 hc- 4401	m : lot be s the t. d wc	one u sum have	shere ne loo 5 ma	we co od. Ol achin	n Spl Lviou ee, H	it the sly, w nc ma	. jobe e can' (cespe	even 't po! in is '	ssibly 2015	, h = 1
						• The Ma • E a+	ivided OPT absolution small g., if <u>mini</u>	A by 2 3 S. er m	++~ + ↓ acal a +. en a\cess ∑ ↓ ↓	4 0F 1 2 C 1 435ign 2435ig	mach 1 ment Hran 20	incs 1 4001 20 hc- 4401	m : lot be s the t. d wc	one u sum have	shere ne loo 5 ma	we co od. Ol achin	n Spl Lviou ee, H	it the sly, w nc ma	. jobe e can' (cespe	even 't po! in is '	ssibly 2015	, h ₹ 1
						• The Ma • E a+	ivided OPT absolution small g., if <u>mini</u>	A by 2 3 S. er m	++~ + ↓ acal a +. en a\cess ∑ ↓ ↓	4 0F 1 2 C 1 435ign 2435ig	mach 1 ment Hran 20	incs 1 4001 20 hc- 4401	m : lot be s the t. d wc	one u sum have	shere ne loo 5 ma	we co od. Ol achin	n Spl Lviou ee, H	it the sly, w nc ma	. jobe e can' (cespe	even 't po! in is '	ssibly 2015	, h ₹ 1
						• The Ma • E a+	ivided OPT absolution small g., if <u>mini</u>	A by 2 3 S. er m	++~ + ↓ acal a +. en a\cess ∑ ↓ ↓	4 0F 1 2 C 1 435ign 2435ig	mach 1 ment Hran 20	incs 1 4001 20 hc- 4401	m : lot be s the t. d wc	one u sum have	shere ne loo 5 ma	we co od. Ol achin	n Spl Lviou ee, H	it the sly, w nc ma	. jobe e can' (cespe	even 't po! in is '	ssibly 2015	, h ₹ 1
						• The Ma • E a+	ivided OPT absolution small g., if <u>mini</u>	A by 2 3 S. er m	++~ + ↓ acal a +. en a\cess ∑ ↓ ↓	4 OF 1 M Assign Assign CiJ Wecw	mach j] ment than 220 ould	Hour Hour Hhai and Only	m : s the r . be al	one v sum bave	shere ne loo 5 ma	we co od. Ol achin	n Spl Lviou ee, H	it the sly, w nc ma	. jobe e can' (cespe	even 't po! in is '	ssibly 2015	, h ∓ 1
						• The Ma • E a+	ivided OPT absolution small g., if <u>mini</u>	A by 2 3 S. er m	++~ + ↓ acal a +. en a\cess ∑ ↓ ↓	4 OF 1 M Assign Assign CiJ Wecw	mach 1 ment Hran 20	Hour Hour Hhai and Only	m : s the r . be al	one v sum bave	shere ne loo 5 ma	we co od. Ol achin	n Spl Lviou ee, H	it the sly, w nc ma	. jobe e can' (cespe	even 't po! in is '	ssibly 2015	, h ∓ 1

