
Co SMPS30 : Algorithm & Analysis - Preliminary Notes

What is the goal of this /- Improve knowledge
& Skills in the fieldofthms

course?
-> w riting & using algorithms
-> Mathematically analyzing correctness & running time of algorithms.
->

problem-solving paradigms Leg , greedy vs dynamic
-> computational complexity.

What is the "running time" -> The maximum number (as a function of input length, in") of primitive

· e .g .,
a T(n)- time algorithm , given an input of length n,

executes at most T(n) primitive operations on that input.

ve ->

OperatWhat is a primiti ions (in the execution of code( that are relatively "Simple" &

operation ? can be executed in
very small amount of time ( ?)

-> Rule of thumb : Pretty much any op.
that can be written as one line

of an algorithm
?

I &

operations that it executes

of assembly code (RECALL : COMP 211 ! / is a primitive operation.

Examples of primit SA signing a value to a variableive X = 0

operations ? S performing a comparison if x > y
:

arithmetic operations x +
Y

->

Indexing into an

array arr [3]

-> Calling or returning from a method (not necessarily performing the method itself)

RECALL COMP USS : How is "The running time
,
aka the time complexity of an algorithm ,

is the number of steps

running time defined ? that it takes to solve a problem in the Worst case
,

as a function of the input length.
-> Formal DEFN : For a deterministic ,

decider TMM
,
the running time of M is the

function F : N- N
,

where f(n) is the maximum number of steps that Muses on

any input of length n

· We use n to represent the length of an input (customarily
·

If fin) is the running time of M
,

we

say that "M is an F(n) Turing Machine"

and that "M rues in time F(n)"

RECALL : What is
-> A way to estimate the exact running time of an algorithm in order to understand the running

asymptotic analy sis ? time of the algorithm
When it is run on large inputs.

For the
running time expression of an algorithm ,

consider only the highest-order term Jaka

term with largest exponent) ,
and disregard the coefficient of that term as well as any

lower order terms (b12 they are insignificant in comparison).

·

For EX
,

for the function Fin) = 6n3 + 2n2 + 20n + &S
,

we say that f is

asymptotically at most ne



Ch 1 : Array Algorithms
key assumptions ? -> Every array has length n

->
Array indices range from Iton (not 0-In-1) like you're used to

Max in Aray-

What is the input ?
-> Array A ofIn distinct

,
positive integers

What is the goal ?
-> Return the largest integer in A in O(n) time.

-> Ex ample : A = [5
,

2
, 0 ,

10
,

8
,
3]

What is the alg m = A21] & - m represents the "max value" . Start by setting
it to A[I]

For (2 in) : ·

iterate through all values and updatem by
if ASi > > m : ->

Setting m = A[i] whenever Ali] >current m.

m = A[i] ·

return m

What is the
running

time ? -> A
Ig loops through for-loop n-1 times

each iteration takes OC1) time because its only primitive operations

-> Therefore
,

RT = (n -1) (2) =
n - 1 = O(n)

-Two-sum-

What is the input17 (A
,

4)
,

where A = array of a distinct integers sorted in

increasing order
,

and te & It is some integer
What is the goal ?

-> Return a set of indices (i
, j) S . E .:

· Alib + A[j] = t
,

and
· i < j

orithm? -What is the alg EX : A = 22
,
3

,
8

,
7

,
9

,
10

,
12]t = 13

ALG (int[] A
,

in + +S : -> Using a "2-pointer" technique

orithm ?

I *

elif A[i] + A(j]
< t : · <10 ACi) + AGj] is too small ,

more i up one

i
, j = 1

,
na C start with A(2] + j[n] as our First

while isji candidate. If A(l) + j[n] = t
,
we can return.

if A(i] + A[j] = t :

return (i
, j)

i + = 2 to a larger value

else : ·If Ali] + A[j] is too big ,

more I down one

j - = 2 to a smaller value.

-> keep checking & adjusting until a solution is found.

Whale is the RT ? -> The a
g makes a maximum of Literations. Each require OCIL time.Thus,

RT = O(n)

What would the aly & RT - B rube-force alg ; O(nas-time

be like if the array wasn't

a ready sorted ?



-

Binary Search-

What is the input?
- ( A

,
th

,
where A = array of a distinct integers sorted in

increasing order
,

and te & It is some integer
What is the goal

? ->1 ↑ it exists
,

return an index 17 S . t . A [k] = t.

- EX : A = 2 1
,
3

,
0

,
7, 8 ,

12
, 15] + = z ANS = 5

,
bic A[5] = 8

What is the algo withm ? ALG(A
,
t) :

i
, j

= 1
,

no
↑ start w/ a pointer at the beginning & end

,

like in 2-sum.

while iji

m = Li + j)/2 ja- check if A &m> is the value (t) we are looking for,

if A [m] = t : · where m = the middle index of A .

return m
"

if we have found t, return index m.

elif A(m] < t : : C if the value the middle index is too small
,

create a

i = m + 1 new "Subarway" of everything
in the "right half' of A

else : li = pointer at start index
,
which is now m + 1)

·

half of the array
.

Why is this aly correct ? -> It always "focuses" on some Subarray
ALi : j] . AZi :j] always contains t,I time).

j = m - 1. & if value of middle ind, is too big ,
recurse on the left

and the size of it shrinks in each iteration .

What is the RT ? - How many iterations of "subarrays" do we recurse through?

-> If
subarray Adi :j] has

length e at the beginning of some iteration
,

and length I

al the end of the same iteration
,
then l'&1/2 (since we are "halving" the array each

-> For ex
,
if thecly sets i = m + 1 in a given iteration :

& = j(index of end of new subarray)
- (m + 1 (new start ind for subarray)) + 1

- j- = j-+  =
-> If ACi : j) initially has length E

,
after Kiterations

,

Adi : j] has length at most

4/2↑ Therefore
,

the
alg has a total of Ollogn) iterations

.

· Each iteration requires OL1) time
.

·

invs
,

RT is OClogn)

RT Note & &
· of iterations : j-i =

n +- ...

41(
O(I) per iteration

kiterations

-

=2 = ne2" = ( = 10gz(n)



- election Sort- CREMEMBER That in theory classes like this one
,

we say arr 22)S

instead of air (0] ... an array v/ elements has indexes 2-n (inclusive),
NOT indexes 0-1n-111

What is the input ?
-> An

array
A of n distinct (non-repeating) , unsorted integers.

What is the goal ?
-> Sort the elements of A by increasing value (e .g. A(I] < A(2]...

A[n] (

-> EX : A = [4
,
3

,
%

, 4
,
33 GOAL/ANS : 21

,
2

, 3
,

8
, 7]

What is the algorithm
? ALG( A) :

for i =
2 ; in :

0 > The algorithm executes Brounds ,
one for each it (n]

m = i

<
For each round

,
we compare the rest ofthe values (after

For j = (i + 1)jjana index i
, hence j = i + 1) to the current value at

if ACj] < A2m >

j ncm-is .

m = j &
If a value at an index > i is smaller than Ali]

, it

indicate which val(ACM3) should be swapped with A[i]
.

-> IDEA : Basically,
in each iteration

,
find the smallest element in i through n.

Then
, swap it with i

.
Then, increment : do it again.I Swap (A (i)

,

A[m)) · <

needs to be moved forward
.
This

,
we set m = j to

What is the RT ?
-> In round i

,
the alg executes at most <(n-i) Operations for some <E ** (pos int)

S umming over all it [n]
,

the total Of operations is at most :

<y(n -i) = 10((n - 1 + (n - 2) +... + 2 + 1) = 0(n)

↑



- Merge Sort -

What is the input ? -> An array A of n integers
What is the goal ? -> Sort the elements of A by increasing value (e .g. A(I] < A(2]...

A[n] (

-> EX : A = [ 2
,
0

,
8

,
5

,

1
,
7

,
6

,
33

What is the algo rithm ? - ID EA : Split A into its I halves & recursively "merge sort" each half. Then,

merge the 2 halves using a 2-pointer approach

if n = 1 : return A

K = (V2)

A = MergeSort (A21 : KS)

*
r

= Merge Sort (A2(k + 1)in])

i
, j ,

B = 1
,
1

,
[empty list]

While isK and j2(n-k) :

if A
_Cis =Ap2j) :

B. append (A
,

[i] (I
Merge Sort (A) :

i + = 1

eise :

3. append (Ap[j]]

j+ = 2

I if is 17 :

append all num in Adj : (n-kS] to B

else :

append all num in A
,
Li : k] to B

return A = B
.

as
_ array ()

RT ? -> Din logn (



(Array Algorithms (

1 . 1 Max in Array

Input : Array A of n distinct
, pos integers

Goal : Return the largest lut in A

English1 ALG(algorithm) :
ala Python pseudocode b

psevclode
- ↓

② correctness

:letrition endation hypothesis Python
↓

③ RunningTime (RT) assembly
D ALGCA) :

machine

~ array indicesStarta rotation
m = ADI)

For i = 2, ... ni

if A m :

3 m = max(m, A(i)
m = A(i)

return m

② Correctness: m is always max (A)1 = i)

lupper boud on
& RT= # of "primitive operations" the All makes in the worst case

What is a primitive operation ?

1. assignment ops ,
e . g. m = 3

2 . comparison (e . g. "itx < 3)
3 .

arithmetic (y = x + 3)

0 Indexing (m = A(1))

5. Calls/return

-> Pretty much
anything that can be done as line of assemblylode

,

is a primitive operation.



Asymptotic Notation SECTION :

-
isnorters way to write something Running Time

f(n) = 32+ 7n3
+ 2n + 9

d

=>

fn = 0 (n3) 11 : 3/ ufr = (n)f(n)an

1.

Technically ,
O(n) is a set that includes

· Un-1
,

Sn
,
2n

,
42

, ...
E

,

1 logn ,
300,
.

2 .
Technical

way
to write it is FING02n)

,

not

3. Almost grey Rtanalysis we'll do .s O
,
not O

8
.

~met
: 1 . 2 two Sun

mput : Array A of a distinct integers ,
sorted in increasing order

2x: A = 51 ,
3

,
4

,

5
,
7

,
10

,
113

,

t = 10

Coul : Return (i
, j) S .

t
.

< j
and Alis + Azj) = +

Brze for me : Try every possibility
M LG (A

,t) : RT= 0(n2)
for i I , ...,

n - 2 i Jusually the case for
10 : 10

For JGi + 1
....,

n :

rested for loops =

if ALi) + A(j) = t :

minimalis
Two-pointer

Two-Sum (Brute Force 1 : 0 (n2)



-
sorted

1
. 3 Binary Search (A

,
t) &This is "One sum"

Goal : Return K S . E
.

A(K) = E (or nothing
Butc Force : Scan A For T + O(n)

Ex : A = E1
,

3
,

4 ,
7

,
8

,
12

, 153 and t=

2. check if val of middle num in
array is smaller than I

A = E1
,

3
,

4 ,
2

,
8

,
12

, 153
· & not 8

2. Then we can more pointer I to the righty the middle num

-> Test middle element
,

check if two big or to

small
, "zoomin"/narrow down the 'subarray' accordingly

-> Binary Search Alg (A
,
+1 :

i
, je) ,
n we are focusing on A (i : j)

While (i[j) :

&j is the highest index in the array
m Candidated = Li + j]/z

if A (m) = t : return m

elif Alms < + :

i Linde !! "M" is index) = m + 1

elig A(m) > X:

j= m - 2

Running Time :

· O(1) per iteration Total Running Time : OClogn (

· of iterations : j-i =
n +- ...

41

-
kiterations

= 2 = ne2" = 1 = 10gz(n)



2. N : Selection Sort

Goal : SorkawayCi. e
.,
we want ALICACIS

... <A2N]

Ex A = 27
,
2

,
1

,
8 , 3) (Goal : [1

,

2
,

3
,

8
,
73)

2. Lets findthe smallest element& put it in the correct spot egnext available?

2. swap 7 with I 21
. 2 ,

2
,

0
,
3]

2 .

Swap2 with 2 C
,
2 , 7

,
1

,
33

3. swapy with [1
,
2,0 ,

12

%

Swap 7 my 7 21
,
2

,
3

,
0

,
is

i

-> In each iteration
, find the smallest element in i thrun

, then swap it wy i
.
Then

,
more i up by

2(i = i + 1)
& Looking for the smallest

ALG(A) : element from index i to

For i = 2
, . . . .
- index

m

forjita
, .....

n : "M = index of

m = i

3if A[j] < A(m] :

min(A(i = n))
m =j

Running Time
:

Similar to Brute Force (BT) my Two-Sum

n
iterations

,
each takes O(n) time -> ANS : O(n2)

For On-il but same thing

Insertion Sort : 0 Cn2) worst rase
,

O(u) ifA is sorted



1 . 5 :

MergeSort(A)-- 1 of I recursive algorithms we will study .

Other is DFS

Ex = A = [2
,

8
, 8 , 5

,

2
,
2

,
6

, 33
--

92
,
1

,
3

,
03 [2

, 3
, 67) -> got both halves sorted,

- & now have to "merge"
2 1

,
2

->

Going one by one three each
array and taking

out the smaller value?

->

Merge takes 0(n) time.

ALG (A) : Listus Array
if n = 1 : return A -> list : appene in OCI) time

K = Lv2 -
· cannot index

A= ALG (ACI : kJ(
->

array : create in Ocas time

↑
m

= ALG(A[k+= n3) index in right · cannot append

initi , jaB = I
,

1
,

emt
half arr

~
can index in 0111 time

wir

Whileid K and jan-K :

if ALis < Amaj) :

append A
,
Ci] to B

I else :

i = = 2 3 merging
append Ar2j] to B

j + = 1

if i > K :

append each element of Ardj : n-1) to B

(For el in Ar[j : n-k] : append el to B

else :

# = B convert B from list to
array (
3 adding the rest

"
but for An ... A Si : k] to B

return A

Running Time :

Takeaway :

=0 complexity is Onlogu)
12 height

,

a
55

· 3an

Total :

Onlogns ...

"

adding the overheads
"



Ch . 2 : Essential Graph Algorithms
-> vertice

undirected grepn

: edge

Directed graphi ↳
· We ignore repeat& parallel sann-dir edges

-> To convent undirected to directed
, just draw 2 edges in both directions ,

for
every edge on the

undirected graph
-> G (V

,
E) where V = Set of vertices N =I r1 and E = set my edges m = IE

-

V
= El ,

2 ,
3 What is largest possible value of ?

E = 5(1 ,2)
,

21 ,
3)

,
73

,
213

(m = edges , =vertices) (for a directed graph(

n max M

In Programming , representing graphs :

D ②

I E ↳

2. .

adjacency list representation Ex : +x4 2 2 00

·

any
③ sQ 3 6 ·

· G223 = list of I's "Out-neighbors" (2 and 1)

·

G 22] : list of I's "out-neighbors" (nones total :An
·

o = 222 ,
83

,
23

,
21

,
83

,

223] · For undirected graph:B0n
-> Array : create in O(n( time

,
index in O(1) time

,
& can't append

-> (Linked) List : Create AND append to either end in O(1) time ; cannot index

->

Adjacency List is temually an

array
of pointers to lists. This isn't important though . "Array of lists

"

2. Adjacency Matrix 123)
Ex :

I
11 , 0 W

I
D-②

Go,a ⑤
0, 0, 13

G(8) [0 ,
1

,
0

, 0

Pros and Lons of Each :

adj .

list adj. matrix

Space : 0(m + n) O(nz)

Time : 0(n2) I 0(n2)

⑫mon



Adjacency List Alys Adjacency Matrix Algs

for win G(v) :

0(out-dgree(u)) ? if G[v] [* ] = 1 :

O (1) time ...
Since we can

is_edge (G
,
u

,
v) :

3 ↓

is-edge (G ,
r

,
v > -

3 index
,

we don't have to

if w = V :

= # of out-neighbors return True Scan the entire D
.
S.

return True
= length of G(v) return False

Clike you wouldw/ a list)

return False

TIME :

TIME :

print-out-neighbors (G
, v) : 0 lout-degree(ul) Print-out-neighbors (G

, v) :

O(n)

For v in G(uS : & ala len (Glub) For v in G(uS : & because we

have to scan

print (v) print (v) over Os as

well as Is

-> TAKEAWAY :

· We use adjacency Hints by default
, especially when you have to do a lot of printing

8



2. I Breadth - First Search (BFS)

-> Input : /G
,
S) where G = directed graph and S=vertex in 6 that is the "Start"/"source"

-> Ex : -
- GOAL : Return an array & s .

t. Vu EV
,

d(u)

↳D

D
= distance from S to a

in 6

⑤ · Aka
, length by

shortest p
Sequence (list) of

=

-> Ans : d = 50
,
2

,
2

,
1

, 37 &
aka

the
"shortest length" of this path =2 of edges in the path vertices that follows edges

lif path I has K vertices
,

↑ Set the out neighborshee
len(p) = k - 1)

- Intuition : BFS I dropping water on a table

-
-

< processes V in layers
-> What is a quere? Can add to the back & remove from the furt in OC1) time

-

-> (Example from above) ... initially set the value of each edge = -. As you traverse
,change the values

.

[2 , +]

20 .
3]

25] ... don't change anything by this point
.

-> Once quere is emply
, you're done i

-> ALG(G
, S) :

d = [0)4n
,

d[S] = 0

Q =

quere (S)

-
niterations ...

each takes Olout-degree (us) time

While IQ11 :
· OCout-degre)) <M

... So you could say RT = O (m2) but that's not the bestestimate
.

!
U = dequerce from Q

&

1
fur vinG(u) : -look at U'sout-neighbors & change "process

I if &[v] = 0 : their raly if they are y
Section

I
& [v] = d[u] + 2 I -I
add v to Q

!
return D

-> RunningTime : Olmms ????? adding up out-dags is

basically counting us

· Literations of the While loop (see orange notes) ↑
· RT = out-deg (3) + out-deg IS's First out-neigh) + out-deg 2S's Ind neighbor) +. .. -

=

[ort-deg(u) =
... RT = O<M + n

nEv

RT =

·

Creating & takes Ons time . The rest of the alg is Olms time .
Thus

,
02m + n).



Ch . 2 : Essential Graph Algorithms
- Bre adth-Firs ↓ search-

What is the input ?
-> (G

,
3)

,
where G is a directed graph and SEV (s is a vertice) .

What is the goal ? Return an array& Sit . For all VEV Call vertices)
, dav] is the

distance from s to V.

What is "distance" -> The shortest amount of edges that you have to "walk along" to get from

->
a

.
K

.
a, the # of edges in the "shortest path"

· If path phas K vertices
,

len (p) = 17 - 1

Example graph ? Graph G :

ANS :

② O BFs(G
,
1) = d = 20

,
2

,

2
,
1

, 37
↑

S D

How is a graph represented As an adjacency list-see pgs
13-16

for function input ? G = ([2 ,
63

,
233

,
28

,
53

,
23

,
(2

, 83]

What is the BFS A - See19? notes on prev page
for more details.

- INTRITION : Start at node s & work through the graph in "layers" ; visit

5 out-neighbors , the out-nbors of those vertices
,

& so on .

·

Implementation :

defined as ?

I
&

&

I

mode to mode v.

*

(3)

that means it hasn't been touched since d was created)

d = [0)4n
,

d[S] = 0 0 2 create a greve Q with initially just s in it.

Q =

quere (S) · 2 set d[S] = 0

while 1Q121 -

3.
While Q is not empty , dequere Caka

,
take

! I
U = dequerce from Q the element/vertice which has been in Q for

& Fur v in GLu) : the LONGEST ; FIFO) a vertex U from Q and

I if d[V j = 0 :· 12

sit. "

& [v] = d[u] + 1 "Process Vertex u" :
V

" add v to Q · 20
loop through each out-neighbor vofu and check if

return D ~ has been encountered before (if d for vertice v = 0
,

?
IfI hasn't been encountered

,
add v to the end of Q.

If v was added to Q
,

set d[v] = d[u] + 1



- Depth-First Search-

What is the idea behind & BFS is like wateroreading across the surface of a table
.

DFs ? -> DES is like running down a maze & leaving a trail of breadcrumbs

·

Traversing down a graph ; whenever we reach a fork in the road,

We pick a direction & continue till we get stuck ... at which point

We backtrack along the breadcrumbs & try another direction.

What is the input &
goal? In pur : A directed graph G

,
for ex : [22 , 13

,
23

,
83

,
23

, 63
,

23 , 53
,
223

,
[33)

- Goal : Return 2 arrays , pre[] and post2]. For anode u in G,

pre[u] = time we start exploring &
2 ,

1 3
,

8

post2u) = time we stop exploring
u 1

,
12 r &

7

3

-D ,
Example of how DFS Works ? S Let t = 2 = starting time

.

P
W

W

18
1

2.S + arten at u = 1
, pre[I] = 1 ; t = + 1 = 2

and is
9

,
10

2. Then we moved to n = 2
,

pre(2] = + = 2 ; + += 2

3
.

moved to u = 3
, pre 23] = t = 3 j + + = 2

& ·

moud to u =
S

pre [57 = t = -jx + = 1

S
.

N · where to
go from mode u = S

,

so we can write the post val :

post 25) = t = 5

6 .

Backtrack to 3
,
which is where I came from

7-

More to u = 6
, pre 26] = t = 6 jt + = 2

B L

O my place to
go

from 6 is 5 ,
but 5 has alr been explored .

Therefore
,
"Stuck"

at 6 So we can write the post value : post [b] = = 7 ; z + =

Backtrack to 3
,

nowhere else to
go ,

so write a post value : post (3) = t = 8 ; t +=

10-
Backtrack to I

,
which is where I came from

11- More to u = 1 Lunexplored) , pre[ + ] = = 9 ; t + = 1

12-

What are the types of edg

I 9.

& DF Stree edges : the edges that the "wet" actually ran across . Edges that were

Stuck at + br 3 and S alr explored
,

so post 25] = = = 10 ; += /

13:
Backtrack to 2

,
nowhere else to

go ,
write the post value : post [2) = t = 11 ; + +=

14 -

Backtrack to 1
,

nowhere else to go ,
write the post value : post(1] = t = 12 ; t +=1

ANS : pre = [1 , 2
,
3

,
9

, 1
,

6)

post = [12 ,
11 , 8

,
10

, 5 , 7]

es

that we can label when doing
crossed to reach not-yet- explored vertices

, highlighted pink in EX above.

a DFS ?
· The union of these edges is called the DFS Tree

·

From Ex above :

②
⑤



esWhat are the types of edg
-> Forward edges :

all edges (u ,
v) S

.
t . there②

that we can label when doing is a path fromU to v in
T

.

⑤
⑳

⑤
a DFS ? · Backward edges : all edges (U

,
r) St . there DFS Tree T from EX1

is a path fromv tou in
T

.

- Cro - edges : all edges (4 ,
1) which are not tree

,
Forward

,
or back edges.

Visual of the Graph From EX1

1
,
12 r 30

= tree

= Forward

with all edges labeled ↑
D

7

& = backward

W
W 6 = cross

J 5 ↳ 6
, 7"

0
, 59

,
10

What is the algorithm for > The "DFS" function is actually just a Wrapper For the Explore function,

DFS ? which actually does the "Steps" described on prev page.

EX plore (G
,
u) : · ~ where = index of a vertice in graph

G

pre[uj = t
a
for

every out neighbor of vertice U

t + = 2

for v in G[U] : · DFS (G) :

if pre[v] = = * : pre , post= [ * ] on

Explore (G,
v) t = 1

s"VIT

pos+ [u] = t for u in Vi

t + = 1 if pre[u] = = 1 :

DFS() relies on Explores · Explore (G ,
v)

for the logic.

return pre , post

Wait
,

is the "DFStree "always - No ; it can have multiple separate root vertices
, kind of a "DFS Forest"

connected ? Each time Explore)) is called From DFS -

not recursively
- there is a new

"Free" in the DFS Forest
,

What is the Ruening Time
-> S imilar to BFS

,
it starts as Olm + n) :

Is Olm + n) linear time ?

I
-> Yes ! Because if the inpur is size 1 ,

then anything that is O(K) is linear time.

JDFS ? & A single call of Explore (GU) runs in GLu] steps
- -

eg ,
in one call

,
it runs

For each of us out-neighbors (bK of line &)
.

· One call of Explore is len (GGU)) time
,
ala out-deg (u) time.

-> S ince
every vertex will be explored once

, and a graph G has n vertexes,

and
"exploring" each vertex takes out-neg (u) time

, the total RT is

O (m + n)
, where m = X of edges.

> Think about the input--if it were a simple ID array of n elements
,then anything

running in On) time would be linear
.

But here, our input is an adjacency list

Of length Min
. Input G hasa lists

.
The sum of the sizes of each list is m.



Running Time depends on the input .
Whenever the RT = the input size,

it is linear time.

-> For ex
,

O(n) would be "linear time" for an adjacency matrix
,

since

matrices are of size Man .adj

Cycle Finding -

What is the by SA problem that applies DFS
. Again ,

the input is a directed graph G
cle-Finding

prob Goal : Return a directed cycle in 6-or
,

if none exists
,

then nothing
.

What is a cycle in a A "Subgraph" or set of edges & vertices that is a sequence of adjacent
directed graph ?

& distinct modes ; e . g .,
the 1st & last vertices in the path are the

same
,

But no other vertice is repeated. P12
D ② ① >

e -> ⑧ ⑤
X

Why does DFS help us -> R ecall the types of edges in a Graph being evaluated on DFS :

↑solen Cycle-Finding e
= tree : traversed during alg

D
7

6
= Forward :

edges between nodes (u
,
r

W whereI a path from u to r in the DFS tree·

J >
37

= backward :

edgas between nodes (v
,
u) S

.
t

.

"

= cross : all other edges
-> Notice that the back-edge in the above graph is what connects the tree

edg & a back edge from v
,
u = 5

,
2

es to form a cycle ! O- b .

tree-edges showing that v = &

lem?

I
-

foru in V :

W

M

#

X

< post[v]
"

&

- ⑤ can be reached from u =2

3 tree edges & I back edge always form a cycle .

·rithm for SWhat is thealy Intuition :

Cycle-Finding ? · Run DFS on the graph to obtain pre- & post-values as well as a

DFS Tree T
-

· If there exists a back-edge (U ,
v)

,
then we know that I a path

P in T that goes from V tou . The path +the back edge forms a cycle

· Return P + (u ,
v) as a cycle in 6.

Find- Cycle (6) :
1 V is the literal "away"

of vertices

DFS(G) Crather than "G"which is the graph
T = DFS Tree

"if pre[v] < pre[u] < post[n]

for vin G2u] :

if Lu
,
v) is a back-edge :

P = the vel path in

return P + (n
,
v)



Cycle-Finding?
-> Running DFS & constructing T is Ocmin)

T RT : 0cm + n)

-Topological ( rdering-

What is the input and goal? Input : A Directed Acyclic Graph (DAG) G
.

-> toal : Return a list R that contains a topological ordering of the nodes

in G-

What is a D . A .
6 !

-> Agraph with no cycles... we can check whether topological ordering can

be applied to a given dir. graph
G by First running Find-Cycle)) on it !

What is a topological ordering! - an ordering of all modes in V S .t . every edge goes from left to right.
-> Formally : An ordering R Of Vs . t .

For all (4
,
v) Ef Calledges),

What is the RT 8

I
->

Checking for a back-edge is O(1)

-

U appears before v in R
.

·

basically ,
a listing of the modes Vo

,
V, .

. ..
EV where

every node only
appears in the list AFTER all the nodes pointing to it have appeared.

-> There can be multiple topo-sorts for a graph
.

Example ? R = 25
,
1

,
2

,
3

,
1

, 0]
G = 1940 OR

R = 24
,
5

,
0 , 2

,
3

, 1]

⑳
· The First element will be a mode that has no edges pointing at it (like or 3

·

Notice thatO can't come in the list until - & 5 already have

What is another way to think
- If

you draw the nodes in R in order from L to R
,
and then add the edges,

of to po sort ? all edges should be following the flow of left-to-right. For ex:

-
⑧-⑳ D
- ->-

What is the intuition behind -> Intuition : run DFS on the graph to obtain post( values
,
and sort

the Topo-Sort algorithm ? the nodes by decreasing post value

- Example :

p
pre 23 = (1 , 2 , 3 ,

5]

+ /d
pos+[] = 2 8

,
7

,
0

, b]

R = 2 1 ,
2

,
6

, 33

S
,

3 d

-
D--

post = 0 post =7 post = 6 Post = J



What is the alg·withm for -> To save some running time
,

we can slightly modify DFS S
.

%
. we create the

Topo-Sort ? Final ordering R as we traverse - rather than running DES & then sorting
post2] .

How do we "modify" DFS - E
vetime we set a modey's post-val (in the Explore() helper function)

,
we

for this purpose ? should then add a line of code to "add u to front of R
!" "

·

Why? bla
everytime we set a post-val for anode

, that is (by nature),

the biggest post-val So far . So we can thus add them to theFront

of R .

Explore - for -Topo-Sort (6 ,
4) : DFS(G) :

pre[uj= tjt + = 2 ↑ same implementation ; see notes

For v inG[u] : on DFS/

if pre[vy = 00 :

Topo _
Sort (G) :

Explore (G ,
v)

R = [empty list]

post(u) = t jt + = 1
DFS(G)

Append u to front of R return R

What is the RT ofTopor
-

Topo-Sortaly = DFS alg with one extra line --

appending to a list (R)
.

Sort ? This only takes O(1) time .

Thus
,

R .
T

. of Topo Sort = R . T . of DFS : OCm + n)

↳ Connected Components -

What does it mean for a graph -> A directed graph where there is a directed path between every pair of vertices ;

&

-

Strong I ->

⑧10r ③

to be strongly connected?
every node can be reached from every other mode.

· For all u
,
-EV

,
I a path from u for AND v to u.

Example ? -> A ny Cycle will be strongly connected.

-> A strongly connected graph G :↳
-> No↑

strongly connected : D- ... Why? there's no path from 3 to 1.

What is a strongly connected -> A "Subgraph" of a graph G-aka
,
a subset of vertices - that is

component ? strongly connected.

-> A subset of vertices that all have paths toa from one another .

-

cc ? G =Example of an S 5 · G is not a strongly connected graph ,
but

↓ ↑ J 21 ,2)
,
23

,
5

,
63

,
and [t] are SCGs

.

Do all graphs have SCCs? Actually , yes . Every directed graph can be partitioned into its strongly
connected components

· Even if the SCC subsets have length I
,

like (1) from the ex above.



What is the problem
-> Input : directed graph G

statement for SCC ? -> Goal : return an array (S . t . For all U
,
VEV

,
u and are in the

same SCC if andOnly if C2u] = c [v]

· ala
,

for
every

SCC
,

all members of the Scc are "labeled"

with the same "SCC number"

->

zXe a ANS c = [ 2 , 2
,

3
,
1

,
3

,
35

in 29
↓ ↑ - nodes 1 & nodes 3

,
5

,
6

2 are an Ss are an SC

-10

S()(6) :
What is the algorithm ? 2.

gr = reverse of l

2 -

pre , post = DFS (GR)

c = [ 8 ]an

k = 1

3 for u EV in decreasing order of post[n]i

if c[u] = - :

BFS(G ,
u)

K represents the "SCC

k + = 10 > number " for labeling .

↑
set c[V] = K for all -reached from a only

-
and if([v] = = -

return(

2. Construct the reverse graph of G
,

GR
, by reversing every edge in 6

(flip the arrows
,

e . g. (u
,
r)EECG) becomes (v

,
n/eE(CR)

Implementation : GR = (27] @n/l graph with A vertices & O edges
(Linear time)

For U in VCG) : // for each vertex in
og graph,

For V in GLU] : // look at its out neighbors

add U to GR[v] I add reverse edge to GR

2. Run DFS(GR) to get the post values for every nEV .

3- For each vertice UEV (in order of decreasing Postu]) ,
run BFS(G ,

5

with a "wrapper" , to find the vertices reachable from u in G.

· BFS() with a wrapper : meaning , only run BFSK) on a vertex if it

hasn't already beze discovered in a previous BFSL) call .

· When running BFSCG , s)
, ignore any node/outneighbor x if c[X] != X

↓. Whenever we have to restart. BES Literations of Step 3's For-loop)
,
that

represents a new SCC
. label all modes explored in that call with "SC(

number "K land then increment K).



Example of running
-> Lets use the graph from the earlier example of Says .

SCCCG) ? c =20
,
7

,
%

,
%

, %
,
8)

1.
Obtain GR :

1- 3
& =

j↓ ↑ ↓ S GR = ↑
⑧ r ③ ⑧"

2-
2 , 9110

, 2 3
& post (1 = 210 ,

9
,

8
,
12 ,

7
, 6]

↑ ↓ m
(For GR)

① · ⑯
11

,
12 -

,
7 5

, le post25] = 12

M
3.

Run BFS (G
,

S = mode w/ highest post value) BFS(G
,
8)

1- 3
&

↓ ↑ ↓
r ③
· BFSCG , 1) returns d = 20

,
0

,
0

,
1

,
0

,
8) bla noded has no out-neighbors

- -

c = [0 ,
0

,
0

,
1

,
0

, 8) ; K = 2

5. Run BFS (G ,
S = mode wh second highest post value) BFSCG

,
1)

Note : "ignoring" nodes in ·

ignore node & because (21] != -

1- 3
BFS would actually be implemented 8 &

↑

·

BFS(G
,
1) returns d = [0

,
1

,
00

,
0

,
1

,
8

, 0]

as not ignoring them
,

but instead , ↓ ↑ ↓
only adding nodes from a to r ③ we set c[u] = K For all the modes

3. c = [2 ,
2

,
0

,
2

,
3

, 03 ; K = z
-

explored by the BFS call--in this

a group
in Gift :

case ,
BFS(G ,

1) ,
which only explored nodes

a)d2u]
! = 8

2 and I. ...
well

,
did explore mode & but since

=
-

T

&24] already filled , we don't care

b) c[u]
7. DON'T run BFS (G ,

S = mode w/ next highest post value) bi next-highest

post-val is mode 2
,
but c[2] ! = - ... it alr belongs to a group

8.
Run BFS (G

,
s = node w/ next highest post valve) BFS (G ,

3)

-> I & & BES (G ,
3) returns d = [2

,
1

,
0

, 3
,
21] ... but

- p

↓ ↑ - excluding explored nodes (green boxes) it is basically

⑧r ③
.

d = 20
,
0

,
0

,
8

,
2

, 2]

9.
c = [ 2

,
2

,
3

,

2
,

3
, 3) ; k =

10·

Done !



What is the RT of ->

Constructing GR and running DFS (for post vals) : 0 (M + n) time

Si ? -> Run BFS from one Vertex v for each SCC Laka a total of at mist

* times) ... but the amt- of vertexes it has to process decreases so ...

-> Tokal RT : OCMIn)

- Applications-

What is an application of -> say you are constructing the course structure for the CS major at a university
.

Cycle-Finding ? You decide what classes are required to take other classes ; what classes

must be taken in
sequence ,

etc.

ledge u
,v indicates

that courseI is a ⑭
prerequisite for course v)

↳ Jas
-> Once you're made your list/structure

,
use cycle-finding alg to make sure that

there isn't a "loop" of classes that depend on each other as prerequisites,

meaning that none of them can betaken. For ex:

⑭

⑮

Topo Sort ? I out a possible order in which you should take all the classes !

What is an application of -> As a student : Use Topo Sort to, given the CS major course structure
, figure



Ch3 : Greedy Algorithms
What is a greedy

-> An algorithm that iteratively constructs a solution ("one piece at a time"

algorithm ? by ,
in each iteration

, choosing the option that appears the most optimal

ht them
,
without considering how current decisions affect futurerig

options.

-> Thi ~king short-term ; best option at each moment

-> Greedy algorithms typically don't work

3
.1 : Minimum Spanning Tree-

What is a
"Tree" ? -> A special type of graph or "subgraph" of a graph G = CV

,El

-> T = (v ,
F)

· V(T) = V (G) : a tree has the same set of vertices as the
graph.

· F(T) &E(G) : a tree's edges are some subset of the edges of the graph.

What is a spanning tree ? -> A tree T of some graph G that has the same properties as above
, but is

also connected.

-> For this problem ,
we will consider undirected rather than directed graphs.

Example ? G =

&
o possible spanning trees:P

What is the problem statement - Input : An undirected
,
connected graph G

,
where each edge has a distinct

For MST ? "WeigIt "ocez EX assigned to it
,

for ex

:Drcio
How do we represent this input I -> A list ofn lists of arrays of size 2

,
where n = of nodes

-> Goal : Return a Minimum Spanning Tree of G.

in code ? -> Each element of the list G represents a nodes out neighbors (e .

g.
G[u] is

the list for mode u)

-
u is comprised of a "tuple" (or

array of size 2) for each one of its out-

neighbors ,
where G[uCI]] = the out-neighbor vertex v ,

and

G 2u[2]] = the weight of the edge between u and v.

Example ? -> So the ex graph above would look like this :

6 = [[22
,
33

,
[3

,
7]] · snodeI has an out neighbor 2

,
with

edge weight 3
.

node I has out-me.
[21 , 33

,
[3

,
2)

,
98 , 23]

, 3w/edgeweight 7.

[21 , 73
,

22 ,
13

,
28 ,

83] ,
jo [22 , 23

,
[3

, 833]
node 3 :

·

out - H 2 wiw(e) = 7

~

out - n 2 wi w(e) = 1

·

out - n & w/ w(e) = ]



What is a Minimum SpanningTree? - A spanning tree of a graph G S . t . the Sum of the weights of all edges

in T is minimized.

·

e . g., pick the subset of edges that allows T to be connected at the minimum

weight possible.

Example? -> From ex on prev page :

m
What does MS↑ return -> Instead of explicitly returning a tree T in adjacency list formal, we can

(in code) ? jusk return a list F of edges , e . g .
MST(G) = ( ( 1 , 2)

,
(2 ,

83
,
(2 ,

3)
d

Can a graph have multipleMSTs? -> No
,

under our assumption that every edge-weight is distinct (veique)
- Prim's Algorithm -

What is Prim's Algorithm?
-> One of 3 algorithms for

solving the MST problem . "Building a cut".

-> EX : G = 0
. ②

What is the idea behind

·D's
it

,with an example ?

-> Intuition :" Start at
any vertex v and add it to your "bubble".

20 To connect it "to the "outside world" Crest of the graph) ,
select the

edge (connected to v) with the lightest weight and add it to "bubble
.

"

nodes have
been S I 30

S

S

7.

7.

vartex 3

edge from D to Q

Add the associated vertex on other side to the bubble.

D · started at Vertex 1
. Lightest edge-weight is for

S 31 edge (1
,
2) . added 2 to "bubble. "

③⑤

Continue this process : The vertex v just added becomes the one you're focused on.

Continue
steps

·

pick the lightest edge weight that "leaves the bubble" ; e . g .,
that leads to

3 andI
until al

a vertex thats not in the bubble.

added to bubble D
· Added edge (2 ,4) . Added vertex & .

The lightest edge from J is

S ( ,
I)

,
but I is alr in the bubble

,
so we add (4 ,

3) . Added

8D'
20

When there are no edges leading outside the bubble
,
"backtrack" to the previous node

and check if there are edges leaving the bubble.

D · Nowhere to go from Vertex 3
,

so backtrack to vertex & . add (5 , 5)

7.

and vertex 5
.

③ ⑤

·

D's
Done !



What is a cut ? -> A cut S is a subset of vertices in G .

-> Anedge crosses a cuts if it has exactly I endpoint in S.

-> EX: S = [1 ,
23
Dedges that cross

S

③

What is the actual algorithm?
- "Build a cut" S ...

Sislike the "bubble" described on pres page.

Prim(G) :

S = 213 . · begin with mode 1 in the "bubble. "

F = Sempty list] Find the lightest edge of all the edges ,
where exactly I

for i = 1, ...,
n - 1 : - endpoint of the edge is an element of S.

e = lightest edge crossing S
-> In real code

,
this line world actually be a for-loop

Leg ,
"for each edge : check if it crosses S .

if it does,

v = endpoint of e not in S

Zonce
check if its lighter than lightest edge so far"

,
and so on

add v to 5 ; add e to F

L
you find e

,
add the endpoint of e that ISN'T in S,

to S
return F

add the edge to final answer list of edges.

But how would we actually implement- > Using a binary array ·
e

.g.

the "set" S ? ·

an "empty set" S = 0 = S = [0] on ; an array of all OS ;one for each node
.

· "add u to >" S[U) = 1

· "remove u froms"S[u] = 0

Why does the loopron n-1 - To connect vertices
,

where n = of modes in G
, you need n-1 edges.

iterations? Therefore
,

the tree T returned by MST will always have n-l edges. We need at most

n-literations to get this.

->

Alternatively , you could replace the while loop with "While ISKR"
; aka

,
while

the cut S doesn't contain all the nodes.

How would we implement the for-lorp for u = 1... - ni

to find e ! for v in G[U] :

if S[u] = 1 and S[v] = 0 (or S[v] = 0 and S[u] = I ?? ) :

---

What is the Cut Property? -> For
every cut S in G ,

the lightest-weight edge crossing S is in the MSTO G.

-> Proof : assume for contradiction that I a cut S S
.
t . the lightest edge 22

crossing S is not in the MSTT For 6.

· if we were to add edge ey to T
,

it would become a cycle-meaning that

it would no longer have the minimum amount of edges needed.

·

To "fix" this
,
it would logically make sense to remove one edge ... and why

Would we remove e ifwe can remove a heavier one ?

-> Proof isn't rily complete... see notes/video for explanation .



Whyis Prim's alg correct ?In each iter. of Prim's
,

we add the lightest edge crossing
S

,
to F

. By the Cut

Property this edge is in the MST T
... so F is always a subset of

T

-

-
Since the alg. terminates when F has n-2 edges ,

and
any spanningtree has

exactly n-2 edges ,
it returns the MST of G.

What is the R .

T

- of Prim's >

Creating the binary array
S

,
and list F

,
takes O(I) time.

algorithm ? -> The loop runs for at most n-1 iterations

edge and keep track of the lightest I that crosses 5)

-> The rest of the stuff in the loop is OC1) time .

-> Therefore
,
the RT of each iteration is OLM)

,
and there are a total of

n - 1 an iterations. So the total RT is O(mn) - time
.

&O (mm) is better than Olm2)
,
so 0 (mm)0(m2)]

·

- Kruskal's AI
-> finding e (the lightest edge crossing S) will take O(m) time (scan every

lgorithm-

orithm
?

-

> AWhat is Kruskal's alg nother way to implement MST that doesn't focus on building a bubble
,
but

instead on sorting the edges by weight.

How does it work ? -> Intuition : "Pick" the edges in order of increasing weight ,
but don't create a cycle.

-> Algorithm : Sort E by increasing weight. For each edge in this order,

adde to a list of edges F (initially empty) ,
if Fre is acyclic

Le .g- if
adding edge e doesn't create a cycle in FJ .

Return F.

2

Example? -> D - ① ②

3
s

3 & 7 333
J

3

③· ,
0

,
0 ,

0

· We add edges (1
,
5)

,
(1 ,2)

,
and (1

,
3) to F because they have thes lightest weights.

· The next lightest weight is edge (2 , 3) ... but since adding this to F

F= blue highlight edges) would create a cycle ,
we don't add it.

· F = [ (1 ,
2)

,
(1 ,

3)
,

(1
,
02

,
28

,5)]

What is the algorithm ? Kruskal(G) : "F + e" is a list o fedges.We can run

pul edges in an array E DFS(G ,
= (V(G)

,
F + e) to check whether its acyclic by seeing

So↓ E by increasing weight . If "Gy" has back edges .
DFS works for undirected graphs .

F = [] · You could also do this check with BFS : run BFS on

for e in Ei F with S either endpoint (e.
,
e

,
) in e

.

If BFS

if F + e is acyclic : - returns &[e
,
] (ifs = eo) = to

,
that means that e

,
and

add e to F e are currently not connected at all
,

and therefore adding
return F e to F won't create a cycle.



What is the R
.

T. For ->

creating & Sorting list of edges : OCm log m (

Kruskal's ? -> m iterations of the "For e inf" loop (once for each edge)

-> checking if F + e is acyclic (DFS or BFS) : 0 (m + n)

-> Total RT : OCmlogm) + m · Olmtn) = 0 (m2)

Why is Kruskal's correct
?
- because of the Cut Property (see textbook py 16)

- Reverse Delete-

What is the Cy cle property ?
-> For any cycle C in G

, the heaviest edge in C is not in the MST of G.

Proof ? -> Assume for contradiction thatI a cycle C whose heaviest edge is in the

MS Chighlighted = MST)+ + --j
8-0

pa

it up into 2 parts ala2 cuts)

-> Since there is a cycle from one endpoint of to the other endpoint ,
there will be anotherI -

Removing & From MST T creates a cut (removing any edge from a tree breaks

edge to in the same cycle C that crosses the cut : -
-F is the heaviest edge ,

so w(epS < W(f) ↑
8-0

- Therefore
, replacing edge o with edge to in the MST

would improve itmeaning T was never a valid mst into
the first place)

elete ? - the 3What is Reverse-D ~a
way to implement MST . Sort of a "backwards Kruskal's

"

How does it work ? -> Idea : Sort E by decreasing weight .

For each edge e in this ordering of

E remove a from G if G-e (G without edge e) is connected
.

Return G.

· Basically ,
we start wh the og graph G and remove edges ,starting

with the

heaviest one and working down (by order of decreasing weight)
·

Every time we want to remove a heavy edge ,
we first check whether the

graph G would still be connected without it.

· If it would
,
then we can remove the edge. If not

,
we can't

·

At the end
,
we return what is left of G

.
This is the MST OFG .

What is the algorithm? Reverse - Delete (G) :

sort E by decreasing weight

For e in Ei

if G-e is connected :

remove e from G

return G



Whal is the RT Of Reverse-
-> Same as Kruskal's :

Delete ? A

Ocmlogm) to sort edges
&

m iterations of for-loop

A

checking if graph is connected : 0(m + n) (BFS or DFS)

-> Total RT : O(mlogm) + m . O(min) = O(m2)

3 .
2 : Selezting Compatible Intervals

What is an interval ? - An array of 2 positive integers [S
,
t] S .

t
.

Set

& (number line

What is the SCI problem
-> Input : an array

A of E intervals Callaa2-Darray
statement ? · EX = A = [21 , 53

,
[2 ,

83
,
[3

,
63

,
97 ,83]

- Goac : Returnalists of compatible intervals that contains as many intervals as

possible.

What are compatible intervals ? -> A list of intervals S.t . No 2 intervals in the list conflict at any point in "time"

Outline of the alg I
-> represents an event

,
where S = start time and =end time.

What is a real-world application- For ex
, imagine thatA represents a list of event times at a conference. You want

of this problem ? to know the max amt of events you can attend (so
,
no overlaps

, and the list

of events to attend .

How do you solve this problem in -> Essentially , among all intervals compatible with S
, Keep adding the interval

a "greedy"way ? e according to some criterion C.

->

Greedy = always picking the 'best option' ..
however we decide to definethat

orithm? 2) pick the intervale that [criterior C].

2) Remove all intervals that conflict with e

3)
RepeatSteps 1-2 until no intervals left .

What area possible choices for- C = pick the interval e that.

the "criterion" C ? 1 - Starts the earliest (intuition : start attending events as early
as possible (

2. is the shortest

3 . has the fewest conflicts with the remaining events Leg overlaps w/ fewest number

of remaining intervals)

J -

ends the earliest

What are counter examples for options
-> Option 1 : If the first event takes all day ,

then this al might return a list

2 - 3 7 of size I caka only first interval)
,
when the optimal Hoferents is much greater.

tiom 2 : Let 1A1 = 3 events
,
where the shortest event overlaps with the longer ones :- Op

jef

I
21

88

e2

This alg would return ISl = 2
,

When optimally ,
size of S= 121 (attend el and e2.



-> Option 3 (event with fewest conflicts w/ remaining events) :

· for each event
, opt. 3 assesses each event by the of events that conflict with it

·

Let IAi = 11 and the events in A look like this
,
where the # = of conflicts :

O
62

·
· The aly will first select event co . Then

,
its only options are one event from G1 and

one from G2 . So the output of events will be 3

· However
, optimally ISI = --- all events in 63 Therefore

,
in this case

,

option 3 will not produce the correct answer.

So what is the optimal criterion ? - Option y : Keep picking the interval that ends the earliest.

Select-Intervals (A) :

Okay ,
so what is the SCI algorithm ?

Sort A by non-decreasing end timee. · ake
,increasing order of values of t

S = [empty list]

for e in A :

· We only need to check against the

last interval because we are adding
if e doesn't conflict with the last interval in S:a intervals in order of end time. If

e conflicts with any interval ins
, itI

↑

3

111

adde toS
must also conflict with the last

return S interval,

What is the RT of ScI ?
-> Souting the intervals : Ohnlogn)(
-> For loop

: Literations So O(n)

-> total RT : O (n log n)

& 3. 3 : Fractional Knapsack -

What is the input ? -> (v
,

W
,
B)

,
where

· v and ware arrays ofI positive integers
· B is a positive integer

What does this problem
-> You have items. Each item has a value ($) and a weight (lbs .)

.

For each

represent ? (The story item i in 1-n
,

the value is VEi] and the weight is whi]. For ex:

v = [3
,
5

,
10]
.

item one is $3 and weighs 11b

w = [1 , 2 ,
5]

item two is $5 and weighs [ 1b

-> You have a knapsack that can hold at mostB pounds of items . GOAL : Choose

which items to put in our bag S . t
.
the valve is maximized.

-> Also
,

we are allowed to "fractionalize" : We can take "2 (or"
,

" J
,
etc. ) of an item

,
which

would add $vCitem]/2 and whitem]/2 Ibs to the bag.



What is the goal ?
- Return an

array x of size n laka one element for each og item)
,
where [i] = the

fraction of item i that we are taking ; e
. g .,

OXSi]2 such that :

·

sum of all weights is B

· sum of the value of the items in the bag is maximized

What is the algorithm
?

-

> Idea : keep picking the item that gets you the highest "value perweight" ,

2 : /20]·
·Sort the items by non-increasing v2ib/w2i]

· In this order
, pick as much of each item as possible wo the total weight

exceeding B Laka increase x(i] by as much as possible

Fractional-Knapsack (v
,
w

, B) : · X2i] must be 12 and the total weight

sort items by non-increasing v2i]/wais of knapsach Must be EB . So take

x = [0]M X [i] = 1 if you have space for it
.

for each item i : Otherwise
, take the Fraction

increase xis by as much as possible: Xi] =remainingweigha
return X

What is the RT of -> Sorting the items : On logn (

Fractional knapsack ?
-> for loop : O(n)

-> total RT : OCnlogn)



REVIEW NEEDED: Merge Sor GBFStree" PGREEDY PPSSUDUCODE ALL

Midterm 1 Review ↑ RT on psol 29t
& DIS algintuition & SCL ALES FORSC

General Notes
& RT linear & stuff with m ,

n

-> Running Time : For undirected
, connected graphs

: n[M + 1 So 0 (m + n) is
actually O(M) - e .g. For BES

,
DFS

,
etc.

-> Array indices start at 2 -> OLlogn) is BETTER than OCms
,
which is better than OCn lrgn)

-> G = (V
,
El but the pseudocode for vertices in a graph must be "For u in V"

Ch .1 : Array Algorithms
Max in Array Two Sum

Input Array A of distinct pos . integers
· (A

,
t) :

Array A ofn distinct
,

sorted integers
and int t.

Goal Return largest int in A · Return indices (i
, j) S . t

. isj and it j = t

Idea · Set ans = A[1) . Scan through every element of
· Start w/ "pointers" at beginning and end of array

array (n iterations) and check if its bigger than (i = 1
, j = len(A))

ans . If so update ans = A[i]
.
Return ans. For Cat most) Literations (For xElenCA) OR

while isj) :

· calculate Sum = A[i] + A[j] . If sum = t
,

return i, j

· If sum<t
,

set it = 2 and try again
·

If sumst
,

set j- = 1 and try again

RT
· O(n) -

Literations of For loop · O(n) -

Literations of for-loop

Binary Search Selection Sort

Input (A
,
t) : A =

array of sorted integers N =
array of distinct integers

t = integer
(SAME as Two-Sum)

Goal Return index K s . t . A[k] = + Return A in increasing sorted order

For i in range (1 ,
n) (literations) :

Idea
get 2 pointers i

, j = 1
,
n

· le + m = i

While i j :
· For j in

range (i + 1
,
n): (the rest of the array after is

· let m = index at middle of array . Check if Alm) = t ·

Check if A[j] is smaller than A[m]
,
which implies

Lif so
,

return m that it needs to be moved back in the array. If so,
· If A(m) t

,
create new"subarray; by setting j = m-1 swap A[i] with A2j] .

(now ,we are only checking elements from the beginning · let m =j and continue

to the middle of the array ; "12 elements) .
· Basically,

idea is to find the smallest element besides index 1.

·

Else if ACmJct
,

create new "subarray" by setting Swap that element w/ A21)
.
Now , Find smallest indexes 1-2-

i = m + 2
bit by bit.

Swap that element W/A22]
.

And so on
... building sorted order

RT
to parse through

·

O(logn) : In each ites
,
the number of elements halves &(n2) : 2 for loops



Merge-Sort

Input Same as Selection Sort
... A = array of integers

Goal I Sort in increasing order

Idea Split A into left & right half subarrays and recursively sort each half then merge them together.

RT O(n log n) : The processes of the alg take O(n) time (e .g . Comparing &
appending etc

.) . Since aly is recursively

called on inputs half the size of the prevone ... total of logn calls &n per call =

nlogn .

Ch2 : Essential Graph Algorithms
Breadth-First Search

G =

Od= [0
,

1
, 2 ,

1
,
3]

-> Input : Directed graph G
,
ints where sev

-> Goal : array d ,
where d(i] is the "distance" (Nofedges that have to be crossed) from mode I to nodes

-> IDEA : 1 . Add node s to a quere . Set d[S] = 0

2. While quere has elements in it
, pop the cleast recently added) Vertex from guere and "process it"

·For every out-neighbor v of that hasn't been explored , set d[v] = d[u] + 1
.
Add v to the queve.

-> APPLICATIONS :

· For a graph Gor a "Subgraph" G
,
we can run BFS to find out if the graph or subgraph is connected.

·

If running BFSCG
,

U2) returns an array of all bos
,
we know that mode U2 is alone

,
not connected to anything else.

·

If running BFS(G
,
5) for any s returns array where any element is o

, graph is not connected

-> OTHER NOTES :

· "For u in V" : pseudocode for iterating through every
vertex in the graph

· "For vin G2U]" : pseudode for iter
. through all outneighbors of a vertex U.

· A "BFS" tree Call edges traversed while running BFS) is a spanning tree.

-> RT : O(min)

Depth-First Search

-> Input : directed graph G. -> RT : 0(m + n)

-> Output : 2 arrays pre[] and post[] -APPLICATIONS : Cycle Finding , Topo Sort

~ Gr ③

↳ P ↓ J ⑳
9

,
18

-O
· Free edge : edge traversed while running DFS (to a mode when it was I' explored
· Forward edge :

edge (U ,
v) S .

t
.

in the TRE3
, there is a path from u to

·

Back edge : edge (4 ,
v) S .

t
.

in the TRE2
,

J a path from vo

·

crossedge : any other edge



Cycle-Finding
-> Input : Directed

,
connected graph G -> Goal : return a cycle in Gif one exists .

-> RT : 0 (m + n) : uses DFS

-> Idea : On a graph with all edges labeled
,

notice that the existence of a back edge implies a cycle (between a back

edge and some of tree edges) .

So all we need to do is check for a back edge.
->

Algorithm : Run DFS and obtain the DFS tree T
,
as well as pre2] and postL].

For each vertice (for iin V) : these 2 lines represent iterating through all of the edges

3 Leach combo of (u ,
v) S . E . is out-neighbor of u

For each of its out neighbors (For vin G[u]) :

if pre[v] < pre[u] < post[n] < post(r] : 7
Formula to check if edge is back edge

P = path in T From v to u

return P + (u
,
v)

Topological Ordering
-> Input : a directed acyclic graph 6. -Output : a list that is a topological ordering of the nodes

->

Topological ordering : list of All nodes S . t .

-> RT : 0(M + n) : uses DFS

· For all edges (u ,
v)EE

o
V Shouldn't appear in the list before u

·

Draw the nodes of a graph From 1-to-R ... the topo-sort Should Follow this C-to-R Flow .

Soa
= ANS : R = 75

,
1

,
0

,
2

,
3

,
1) or

& ⑤0 00+- D
-

R = 24
,
5

,
0

,
2

,
3

,
1) or

R = [5 ,
5

,
2

,
0

,
3

,
17

-> Algorithm : run DFS
,

and each time you add a mode to the post[] array , append it to the front of

11
,
12 R

. Sorting nodes by decreasing post value

③zijsD post = 29
,

2
,

6
,
5

,
10

,
12]

-12 mode : 0 1 2 3 + S

>

-
,

5 R = [5
,

6
,

0
,

2
,

3
,
1]



StronglyConnected Components

-> Input : Directed graph G -> Output : An array c of the nodes labeled by the SCC they are

-> RT : 0(m + n) in
. For all n

,
veV

,
u and vare in the same SCC i .

F
. Club= <[v]

-> StronglyConnected : A "subgraph" of a graph G-alla Subset of Vertices Vy-S. t . For
every mode in Vy there

is a directed path to every
other node in V2 .

-> All Cycles are SCCsP ~ = [1 , 2
,
3] is an SCC bl all nodes reachable from one another

.

EX

xx- Do - 0 - ③
↓ ↑1) -x

3
D- B- ③

-> SCC in directed graph is analogous to a connected component in an undirected graph.

· The undir - graph converted from a connected disgraph -

or any connected undir graph ,
for that matter - has exactly I

connected component ; the whole graph.

-> A
graph is a cyclic i .

f
.
F

.
the size of every SCC isI vertex.

-> ALGORITHM :

2. Construct ER
,

the reverse graph of G
, by flipping every arrow ledge) (linear time??

2. Run DFS on GR to get the post values for each vertex

3.
In order of highest-to-lowest post value post [u]

,
run BFS with s = u to find which vertexes are reachable from in G .

↑
Each time BFSCG

,
ux) returns

,
add all the nodes ind which arit infinity

,
to a new SCC group.

Ch . 2 Summary
BFS -> use to find it graph or port of a graph isn't connected

DFS to use post) vals in high-to-low order to create Topo Sort for a DAG

·

use precy and post vals to check if a graph contains a back edge,

which implies that it contains a cycle.

-> Do this by checking if preCu] < predu] < post[v] < post[v] for
every mode & its out-neighbors &

S - . Reverse the graph ,

Run DFS on reversed graph ,
use post (2 to run BFS on each mode in high-to-low post-val order.

The modes explored by a given run of BFSCER
, UX) are all in the same SCC.

·

Return
array (S .

t
. C[V] = <[u] if & u are in the same S

·

Running DFSCGR) to get post array . BUT we run BFS on G !!!



Ch3 : Greedy Algorithms
-> Choosing best option at each time that a choice has to be made.

-> Weighted undirected graphs :

every edge e has weight w . In code ,
its similar input as the

adj.
list Fur a dirgraph 2except for every out-neighbor we use a tuple [vertex v

, weight w] :

6 = [(2
,
33

,
[33

,
983

,
23] G = ((92 ,

13
,
23

, 83]
,

223 ,
233

,
228

,
63]

D + ② D + ②

↓

① · Dri
-> Spanning free : a path"/subgraph of a graph that reaches all nodes Minimum of edges .

Exi

S
.T . orG = Q·a -

-> Minimum Spanning Tree : A ST where the sum of all weights of edges is minimized. Has exactly n-1 edges.
· Goal : return an MST as a list of edges (tuples) F that the MST contains·

-> A Cut = a subset of vertices S in G . An edge crosses Sif Zendpoint is in S.

Prim's Alg

-Idea : Build a bubble by adding vertices to a cut & then looking for the lightest edge crossing the cut . Add lightest edges to

2
g

i
a list F

.

Add vertices to cut S . Repeat n-1 times or until 151 = M.

-> RT : 0 (m
2 )

... (n - 1) · (m) = O(mn) = 0 (m2)
⑧ 1)

· # of edges in output MST = n-1 so n-1 iterations
.

8

·

finding lightest edge : O(M)

Kruskal's Alg
-> Idea : Sort the edges by increasing weight (OLmlogm)) .

Add the edges to E in order , starting wh lightest .
Before adding

·acroFoFian
a

g

⑧ 1)

7

Reverse-Delete

-> Idea : Sortedges dy decreasing weight (mlrgm) . Fromheaviest to lightest ,
for each edge e (miters) : check whether G world

still be connected if we removee by using
BFS (G-e)

.
If so

,
remove e from G.

⑧

gO eRT : O(Mr ... Same as Kruskal's

0
.
0



Selecting Compatible Intervals (SCI)

-> Input : Array A of n intervals (interval = [S
,
7]s . t . SCE)

. They represent times

-> Goal : Return a list S of compatible intervals that contains max of intervals possible.

·

compatible intervals = no overlap

-> Idea : keep selecting the interval that ends the earliest.

->

Algorithm : Sort A by non-decreasing end time Laket from [S
, t])

.

From lowest to highest ,
add interval

X to s if it doesn't conflict wh the last-added interval
.

-> RT : O(nlogn) -

nlogn (sortA) + n Literations) & O(1) = nogh + n

Fractional Knapsack

-> Input : (v
,
w

,
B) where v = array [] of n $valves

,
w = arrays ofn weights ,

and B= integer weight limit.

· There are n items
,

For items iz ...
- in

,
V[i] is its value and w[i] is its weight.

- Goal : Return
array X OF EIR numbers S . t .:

· 0[X[i][1 · vi] * X[i] = the value added to bag for item: Whi] * x[i] = weight added For item ;

·

Sum of x[i]eW[i] for all i is B · value is maximized

-> Algorithm : Calculate ratio Vib/weis for all items i
,
and sort the items by decreasing value.

For each item starting WI highest ratio
,

add as much of item as possible wo weight exceeding

B .

-> RT : O(nlogn) -

nlogn to sort
,

n O(I) iterations.



Summary of ALL

Array
·

Max in array-
> O(m) returns mat value int

· Two Sum -> O(n) SORTED ARRAY returns indices is

·

Binary Search - O (logn ( SORTED ARRAY returns index of int for BT (Array ,
t

·

Merge Sort - Ochlogn)
·

Selection Sort - 0(n2)

Graph

·

BFS c Olman] For directed
.

O(m) for undirected

· DES : Cycle Finding
& Olman) or O (m) for undir .

·

DFS : TopoSort s " input is DAG

·

SCC GR = Reverse G ; run DFSCGR)
. Sort nodes in decreasing post2)

order ; In that order
,
for each node

,
run BFS (G ,

S= node) and add "

all connected nodes to SCC .

· Olm + n)

Greedy
· MST (Prim's

, Kruskal R-D) & OCM2)

· SCI- O(nlogn (

·

FK c OCnlogu)



Ch . N : Dynamic Programmiu9
What is Dynamic -> A Way

to solve problems that involves solving a sequence
of increasingly

largProgramming ? or subproblems by using
solutions to smaller subproblems .

· "recursion with a table"

- Recurrence of a subproblem .

How does dynamic >

Finding the sol's is a little trickier But most of the time
, dynamic

programming compare to greedy? algsolutions work better than
greedy ones when it comes to

finding an "optimal" solution.

-> Dynamic is more Formulaic

What is theFormat for 10 Find subproblems : smaller
,

not necessarily identical "versions" of

Finding& presenting a DP the
original problem.

alg?
·

Which subproblems will we solve ? What will we return ?
2. Recurrence : How do we solve each subproblem using solutions to

smaller subproblems ? What are the base cases ? Why does the

recurrence hold ?

·Similar idea to induction or recursion

· OPT[] = the "table" of solutions to each subproblem.

3 . AIgorithm : Turning this recurrence/the idea into pseudocode-

What is the RTFor musX 8 -para.
DP algorithms ? -> Typically ( # of problems) x (time per subproblem)

j sing DP to solve "Max in Array"
I

RECALL : What is Max in -> For an array A ofm distinct pos . integers ,
return the largest int in A.

Array 1 · Ex : A = [3
,

1
,

4
, 5

,
2]

What are the subproblems
?

-

> For all i in A
,

we can find the max integer between A[I] and Ali] ;

2 . y - starting at A(1] and continuously keeping track of the biggest
int "So Far" .

What is the recursive case?

I
->

ForaOPmxOPT
So

· For all i in
range 1-n

, let OPT(i] = max (ACI : is

·

We will return OPT [m]

-> Ex : Opt[1] = y OPT[I] = 3 OPT (3) = /

What is the base case ? ->
OPT [I] = A[1]



Why does this recurs ion hold? -> Max (AC2 : i)) is either the largest integer in ACI : -1) Cakaopidi-]) ,

or it is A[i] ; OPT(i] "picks" the larger option.

What is the pseudo code ? Max-in-Array-DP(A) :

d = [A[1]]an

for I in range (2
,
n) :

return d[n]

What is the RT ? - n - 1 iterations ; O(1) time for each ; total RT = 0(n)

-

Longest IncreasingSubsequence -

What is the input and
- Input : Array A of i integers.

the goal ?
· Ex : A = 23

,
4

,
1

,
5

,
2

,
3

,
6

,
1]

- Goal : Return the length of the longest increasing subsequence
(415) of A.

· ANS : J
... S = 21 ,

2
,

3
,
6]

What is a subsequence ? - A subarray of an array A that may skip some elements but may not

What is an I . S .? I -> Sub

& (i) = max (d[i - 1]
,
A[i])

contradict the order of the elements in A
.

· E .g. if B = 2 3
,
5

,
5

,
1
,

3
,
2)

,
then some subsequences are :

23
.
5

, 33 [5] [S
.
2)

,
but NOT 21

, 1) or [1
, 3)

sequence subarray where each element must be greater than the last.

· E . g . for exaur A labove)
, possible I . S .. are (3]

,
[1

,
5

,
67 ,

21
,
2

,
3

, 63
,

23
,

0
,
5

,
63 .

What are the subproblems? For all i in (2 ....
n)

,
let OPTSi] denote the length of the L . 1 . S.

of A that must end on A2i].

· Not the same as finding the LIS for the array
A21 : i]

,
ble that

wouldn't necessarily mean that Ali] has to be in the L . 1. S.

-> EX : A = 23
,
1

,
1

, 5
,

2
,
3

,
6

,
13 . Let "s" denote the LIS for each subproblem .

· OPT21] = 1
,

S = (3) ·

Optsas = 2
,

5 = 23
,
5)

·

OPT (3) = 1
,

S = (1)
... because the LIS mustend on A (3) for i = 3

,
we can only

include all A[x) For X = 1
,

. . .

,
i .

Both ACI] and A(2] are < AC3)
,

so

they won't form a valid increasing subsequence.

·

OPTC1] = 3 S = [ 3
,

5
,
3)

What will we return ? -> the maximum valve in the OPT array.
NOT OPT[n] like in problem N. 1.



What is the recurrence + Ex : lets look at Finding OPTCJ] For this example .

Let i = .

pattern/idea ? A = [3
,
4

,
1

,
5

,
2

,
3

,
6

,
13 Opt = [1 ,

2, , & 13
-> S ince OPTCi-1] will represent the longest Lis ending on i

,
we can find

the LIS For OPT [i] by Finding the "best" entry ALj] to "Come from" before

"Iumping" to ACi].

Lond .

I
·

basically ,
look at all elements ALX) where x < i ...

aka
,

elements

Ma
that

appear before Ali]
,

to maintain ordering.
Cond

us
·

of all of these
,

narrow down and only look at elements A[x] where

* [x] < A (i]
...

aka
,
element , which are smaller than Ali] ,

to maintain the

"increasing" part
of LIS

·

of all of these
,

choose the element i with the largest value of OPT2N]
·

The option that brings the longest prior subsequence with it
.

What is the base case? -> Op T[1] = 1

OPT(i) = 1 +

maxjz
OPT]j] ,

where

What is the recurrence ? I -> calculate Opt (i) for all : ? 2 by satisfying the Following recurrence :

C = Ej/j < i and Alj) < Alis 3
* "C" set of candidates to consider . Uses cond . I and 2 from above.

· if C = p ,
OPT(i] = 1

.

What is the algorithm ? LSCA) :

d = [1]no setting base case

For i = 2, ...,
ni

· calculate did according

For j = 1, ...,
i - 2 : to described recurrence

if Alj >< A[i] and d(i] < (1 + d9j]) :
For OpTais and

return max (d) .

d[i] = 1 + d(j]

return max (d)

What is the RT ? -> 0 (n2)

est Palin-

Long dromic Sequence (LPS)-

What is a palindromic
-

a subsequence S where S is to the reverse of itself
.

subsequence ?
-> EX : A = acbba

,
then a PS could be (a]

,
[b)

,
(b , b)

,
<a

,
<] , or

2a
,
b

,
b

,
] .

What is the inpul & -> Input : a string A of length m. Haters, not numbers.

goal ?
->Goal : return the length of the longest palindromic subsequence

(LPS) of A.

-> EX : Ans = &
,

LPS = [a ,
b

,
b

,
a] .



What are the subproblems
?"Instead of C ID array ,

OPT Will be a 2D
array OPT2])]

-> For all i in 12
,..

0

,
-2) and all j in Li ....,

n)
,

OPT[i][j] denotes the length of the LPS in the subarray
S = A(i = j]

· The subproblem is a "substring" - from i boj-rather than a

"prefixy"

- The subproblems are
: For each substring of length X in

range (1 ,
n) ,

there are n! possible subproblems/substrings
·

Total of Ocn2) subproblems ·

What will we return ? - OPT92SIn)
, because this is the "subprosum" For the array

Alain),

ala simply A

How can we visualize ->
OPT (2][1] = 1

,
LPS = a

, Subarray : All : 13 : "a "

OPT ? -> OPT [1J92] = 2
,

LPS = a or a subarray : All : 2) : "ac"

-> Opi(]28] = 2
,
LPS = bb , subarray = AC1: 1) = "aabb"

=>

-> Lets create the ID Matrix for A = acbba as a table :

j = 2 2 3 J 5

a Lbb a

2 a F *-> OPT (1][j = n] is what we want

J
to return .

i =

2
any OPTC: )[j) where i= j

59 & 2002
-nu 151 = 2 be the substring

- ↑ (i : j] is the same as ALis
.

any opTCi](j) where icj is invalid because
not a sequential substring

10
What are the 2 types of F or all OPTCi][j] ,

if AZi] = Alj]-aka ,
a substring that starts & ends

"recurrences" to solve ? W the same character - then the entire ACi : j] is an LPS as long as

the content between ; and j-aka ,
Ali + 1 : j- 1] is also a

palindrome. So LPS for OPTCi][j] is the LPS of the inner content
,

- 2 For Ahi) and ALj]

· Formally : if A[i] = A(j] ,
OPTCi] < j] = 2 + Opi2i + 1]<j - 2) .

·

But how would be Obtain OpiCi + 13(j-1] ?

28
if ALi] # Acj] ,

we want to find the LPS of the substring wo ACi]
,

and

the substring who Alj] ; and select the larger LPS.

·

Formally : if ALiS FA(j] ,

OPT(i)(jj = max(OPT(i](j - 2]
,

opT(i + 1] < j]/



How do we fill the table ?T Sachentry in the table depends on the * to the left of it Jaka i-2)
,

below it Jaka

j - 2)
,

or to the bottom-left (diagonally) (aka OPT(i -13 (j - 13 )

-> We can't Fill out entry OPTSi)(j] Unless OPT Ci + 2] (j)& OPTCiS(j - 13

&d OPTCT-13Cj-17 have already been filled .

-> So
,

we should fill the table row-by-row L-to-R
, Starting from the

bottom row . · EX : A = [acbba]

j = 2 2 J 5

a -ba
2 a 2212 1 - 2 + op+ 223453 = 2 + 2 = 1

2( & 1 1 2 2
ALid = Azil , so we

take

i = - 2 + Opt 213(3)
= 2 + 0 = 2

3 3441 22

2-
ALi) FACj] ,

so we take

J b0991
max (0PTC1](+] ,

OPT(5 ,
3)

sa * * 2

What is the algorithm ? (PSCA) :

d = [0] * (nxn)o creating our OPT matrix

starting
at i = n

,
ake the las

=

For i = In, . .

.,
2) : ·

row
,
bi we want to

go
from

& [i] [i] = 10 > the base case bottom to top.

for j = (i + 1.... n) :
for each now

,
we work Leto

- R
,but RECALL we only care

if A[i] = ACj] :
about values of Opi/d where

ji.
d[i][j] = d(i + 1]2j - 27 + 2

zir
ACi] = A[j] ,

take the length
else :

Of the LPS For all characters

&[i]2j] = max (d[i +1][j] , d[i][j-2]) between Ali] and ACj3 .

Then

return d[2][n]
add 2

,
for each of AL.] and

↳ ↳ case 2

A(j] . CASE I

returning the LPS For the entire string ,
aka ACI : m]

.

What is the running time? -> The DP bable has ne entries
,
each of which take OCI) time to compute .

This
,

the RT is O(n2)



- - : 0/2 knap↓ sack-

What is the input ?
-> R&CALL 3

.
3 : Fractional Knapsack

->

Input = (v
,
w

,
B) where

· B = An integer knapsack weight limit

· v = array of item values

· W =
array of item weights

What is the goal ?
-> Unlike F. K

.,
we can't take "fractions" of items -

only all or none of an item.

-> R2TURN : an integer representing the maximum/optimal Are that the knapsack

can have

RECALL : How did we solve
-> Order the items by their value radio, eg

~Ci </wei] For all i
.

From highest-to-

Fractional knapsack ? lowest ratio
,

take as much of each item as you can.

-> Ex problem : B= 1 v = [3
,
2

, 23 w =2
,

8
, 3]

lems?What are the subprob OPT will be < 2D-array with i = n = VI columns and j = B + 1 rows

Le . g., JEE0 ,
1

,
...

B3 and IEE
...

R3)
.

-> 8↑T Ci)(j] denotes the maximum value of the knapsack If we can only
select items 2

, . . . ,
2 . AND

,
the weight limit is j.

·for ex
,
for an 0 . g . input (v

,
W

,
B)

,
OPT92]93] is the max value

of aknapsack where BES , Ve = v C2 : 3)
,

and W = W (1 : 33 .

What will we return ? -> 0PT Cn][B]
,
aka the last now & last column . At this index

,
we have imitated

the orignal problem. # O1 2 b JE because B = &I
18

Fit the item in our beg

2

-> ANS

EX

problem
:

i = 2

because n = 1 rl =3 3

What are the base cases ? -RELA 22 : Base case= recursion not necessary to solve.

-> 2 Base cases :

OPTCic (0) = 0 For all i
,
because in

thesesproxim,
the

weigalimit = O
,

so we can't pack any items.

20
* P + [1][j] has 2 possibilities :

3

· if j < wC1]
,
then it is 831c we can't

i = 20

3 8

· if j2W (2]
,
then it is V21] .

· We only have one item to consider .



What is the recurrence ? ->

OPT(i)(j] For all 122

-> 2 possible "cases" for each recurrence :

2. When considering an item ; at weight j ,

if Whis < j ,
then our

"solution" fur the optimal value doesn't change at all
,

bla we know for a

Fact that we can't bring item i.

· So , our solution would be the smaller subproblem where the weight
limit is still j ,

but the list of items doesn't contain i.

·

Formally : If WCi] >j ,
then OPTCiS[j] = OPTSi-2]<j]

2
If item i could fit in the bug ,

we have 2 options :

a To still exclude item i,in which case the value is OPTCi-1][j]
6

To include item isin which case the value is V[i] + OPTCi-2][j-w(is
·

Why ? Because if we are picking item i, the space in the bag is now

reduced by the weight of item i .
So we want to add rCi] to the

Optimal value OPTISC) of the subproblem where jis whi] smaller ,

and item i hasn't been included.

· We should choose which option , as or bo
, yields a larger value·

-> Formally : OPT(i][j] =

S
OPT(i -2][j] if w(i] < ]

max (OPTCi -2][j] ,COPTCi-2](j - w(i]] + vei])]

-
Otherwise. -

ignoring
↳

including :

i = 203333

303335
What is the pseudocode? Knapsack-DP(r ,

w
, B) :

d = [0] + (n x(B + 1)) · ~ B + 2 columns bi we want to have a column

Por j= 0 up to j = B
For j= 2, ...

Bi

if j2w[1] :

& [2][j] = VII] of Base case

For i = 2
,

-- -
n :

for j = 2, ... B :

iFj < WYi] :

dcijjj = d[i-1]2j] · > We mustignore item :

else : we can ignore
or include

d(i](j) = max(dCi-1][j] ,
v2i] + d2i-13(j-w(i]]o item :

return d[n][B]

What is the
running time? -> Table has nelB + 1) entries · Each entry taks OCK time

,
So total RT is 0 (n B)



is the DP alg for / /- the brute Force RT is MC24-n) Ctrying every possibility (

brute force ? depending on the size of B
.

· O(nB) is still not polynomial time

-> Bux often ,
O(nBI could be less than O2"-n) ? idk

-

- Edit Disk unce-

What is the "edit distance" ? -> The minimum number of "moves" we need to make to turn a

string A into a string B.

&
In real python code

, A[I : i] · The "distance" between A and B .

actually means (2
, ...,

i - 2) .
Bul

in notation for this class we can
- 3 types of possible moves :

> "Labt"

knapsack anyFaster than

I
-> The DP Alg isn't necessarily Pastar ; OCNB) could be larger than 022-n)

,

bake it to mean (1 , ...,
i)

,
all a

* 21 : i + 1]
. So in my notes !

2. Insert a character (anywhere in A) "Cat" > "a 2at"

write either of those kind of
2-

9 "Ca "

Delete a character (anywhere from A) "cat" & "Ck"
inter changeably.

3.

& "at
"

"Cat"aat,
Replace one character (in A) with another

-

counts as one more.

What is the problem statement?
-> INPUT : (A

,
BS

,
where A and B are strings of length m andm,respectively.

-> GOAL: Return a nonnegative integer representing the edit distance from

A to B .

Basically of moves to turn A into B

What are use cases for this -> Autocorrect suggestion algorithms : looking at real words w/ a small edit

problem ? distance from the typed word that has a typo.

-> DNA : comparing how similar 2 strands are

What are the subproblems?
-> EX : A = "Star" and B = "Water"

> We will shrink both A and B down to prefixes and find the edit distance for

each combination.

-> For all it [0
,
1

,
... m3 (m = lencAl) and jedo ,

I
,
... 3

,
let OPTCisCj]

denote the edit distance from A = ACL : i + 13
*

to B' = B<1 : j3
*

- We will return OPTCm]Cn] .

Helpful for

Why do wa start OPT [J[] with
-> A20) and BCO] denote an empty string (whilst AC1]

,

For ex
,

= "S")
. solving

index 0 ?
->

EX "
j = j 1238 S

.... wa + er

0 .. .. 01238 5

2 S I

i = 2 t
2

39
3

s ANS
& r

J

What are the base cases?
- Op+ 20]2j) = j

· editing empty string into str of length I will takej insertions

- and OPTCiSO) = i

· editing str of length : into the empty string will take - delations.



↓ 2315H our would we fill out
=

e ~

row i = 2 ? O ... B 1230s

=
2

She& each time
,
we need to First

Sw/W , replace with one of
w

3 a 3. then add a CW
, a ,

+
,
e

,
r]

,
and then

Lone possibility> insert the other 2-1 chars

↓ r J

S

What about row i = 2 ?
j=% ↓ 23 ~

O ...
0 1238 5 &

Here
,
we have to turn st-wat.

2 S I I 2315
OPTIONS :

i = 2 t 2 2 &
↓ rep

2)
turn st -wal + 2) (aka Opigi](j- 17)

39 3 delete"s"
,

(S
,

w) add++ 2)

↓ r g replace <t ,
2)

- repict
,
n)

2) turns - wat ( + 3) (akaOpiCi-1j< js]
delete t ( + 1)

-
30 turn s -> wa ( + 2)(akaopiCi-1](j-1))

~ "replace" - with + ( + 0 >
-> For the 3rd option , replacing wit

actually = doing nothing ,
so it costs 0 bic Aci] = BCj] .

What is the recurrence ? -> For all i 21 and j22 .

-> For each OPTCi](j] We have to edit ACI : i] S . t .
its last character

equals BLj] .
There arey ways to do this :

2) Edit All : i) into B(1 : j- 1]
,
then insert B(j]

·St-wa - wat

· OPT 2 : ](j- 1] = moves to edit All : i] into BC1 : j - 2)

·

So this would be Opi(i](j -17 + I

2)
Edit A21 : i - 1) into BC1: j3 , then delete A Lis

·

St -> Watt - wat

·

Op + Ci - 13(j] + 1

3) Edit A[lii-1] into BC1 : j-1] and replace Alis with B2j]

·

s -wa - wat

· if A2i] FB2j] ,
cost is OPTCi-1](j - 13 + 1

· if A(i) = B(j] ,
cost is OPT2i-1][j - 1)

-> Formally ,
OPT 2: ]Cj - 13 + 1

OPTCi](j] = min E OPT 2i - 1][jj + 1

opt9i-1[j - 12 + Sij
where Sij = 0 if ACi) = B< j] ,

and = I otherwise.



d = [0] + ((m + 1) x(n + 1))

For j = 1
, ...

mi

d[03(;j = j

Por i = ,
,
... mi

& 2 : 350) = i

For i = 1
....,

mi

For j = 2
,
... i

& [i]<j] = min (d(ij2j- 13 + 1
,
d(i -1)(jz + 1)

if A[i] = B(j) :

&[i]2j] = min (d[i]<j] ,
dCi -132j - 13)

else :

&2i]2j] = min (d[i]<j] ,
d2i - 1]cj- 13 + 1)

What is the pseudocode ?

I
Edit-Distance (A

,
B) :

& r J

&

&

64.Jo

return d[mJ[n]

What is the RT ?
- Ocmns

j = j ↓ 23111

O .. ..

0 12305

11 j 2315S

i= 2 + 222236

3

a332334
-3383

- Independent Set in Trees -

How do we apply DP bo -> Each subproblem corresponds to a subtree of the tree
T

.

tree problems ? -> For each subbree
,

we can define& subproblems tied together by their

recurrences.

What is an independent set ? - A subset s of the vertices of an undir. graph G S .t .:

· fu
,
res

,

Su
, v34(6)

· For every 2 nodes in S
,

those I nodes are not an edge in G.

-> EX : G =

2
-

-
one subset is 22

,
3

,
63 bin the Hire

! modes aren't connected to each other

(directly) .

Recap : What is a tree ? - An undirected graph T withn vertices where :
W

· There are exactly n-1 edges %
·

T is acyclic %
2 ↑ is connected

b



What is a maximum -> An independent set whose weight is as large as possible.

independent set (MIS) ? (If weights not given , every mode has weight = 1. )

-> RECALL COMPJSS : the problem of finding the MIS of an undir.

graph G is Turing-hard ; nobody knows if a poly-time alg exists .

What is the input to -> A tree with weighted nodes. Specifically ,

(T
,
W) where

I . S . T .?
~ T = CV ,

A) is a tree rooted at vertex I

· W is an array of length /VI
,
where WCu] is a positive int. denoting

the Night of vertex u
.

· Unlike MST
,
in IST

,
mode weights aren't necessarily distinct.

What is the goal? -> Return the weight of a MIS in T
.

Examples ? - The labels on modes represent weights ,

not node X :

-> = G

d
↑ = ① Aus :12=⑤

ANS : 5 (2 + 3)

⑮ died
- EX :

TF not

·di
What are the subproblems ? -> We can't do prefixes like in arrays ,

but the of that is subtrees.

-> For all nodes in T (For all uEV)
,
let T(u) denote the subtree rooted

at node u

· 2x : + (3) = g and=
-> We define E subproblems for each vertex subtree T(U) :

20 OPT
.

[U] : denotes the weight of the MIS in Tlu) but we must

include node u .

20
OPTon ,

24) : denotes the weight of the MIS in T2U) but we must

exclude node u .

· EX : OPT
in

23] = 3 OPTor [37 = 11

③

⑤ g
What will we return ? - We will return max (OPT,

Tr]
,

OPT
in
[r])

,
where w is the roof of

the whole tree T
.

e . g. mode I in exabore.

What are the base cases
?-If U is a leaf-aka a mode v/ no children

,
like node 7 from ex above,

then T(u) is a graph wronly one mode :
Th =

so

·

OPTin [u] = w9U] (we include node u

· OPTon[n] = D



-> Given the base case
,
we can find OPTinGul , OPTOnCu) for all leaves :

i

=0
...

D
How will we find Optin and - For the second layer of nodes v

, OPTin will be win] because we

Opton, for the modes which can't include any of its children.

are not leaves ? -> Opions will be the sum of the Optin values for each child
,
since the

children are not connected : added

vals For &
↑ (2) = D ·Opi[23 = & secondTDo..

①
opt

= I +=

layer

D
What is the recurrence for + For all in T which are not leaves

,
OPT

.
[u] will be the weight of u,

OPT
!

[u] ? plus the OPTouy[v] value for each of u's children

· Why ? Blif including u we can't include us children. But we can

include us "grandchildren" so for all of us children we add up the

weights of the MIS' that don't include the child .

· Formally
,

OPT
.
[n] = w(u] + & OPTjn[v]

vech(u)
↳ ala us children

What about OPT [u] ? -> We can't include u
,

but that doesn't mean we are forced to include us
Oul

children. Instead
,

for each child v
,

we can check whether including
~ C & thus excluding v's children) or excluding v will give us a higher

weight.

·

For each child
,

decide if it should be included Lindependently I.

·

Formally , OPTory(u] = &max(OPT
,

[v] ,
OPTCry

But
vEch(u)

&

= so ans = max (21
,
23) = 23 !

D
- Another 3x:s
Be

Do
.

o



How would we implement the -the input T will be expressed as a list of lists of each modes

solution in code ? neighbors ,
and W is a list of each nodes weights. Ey ,

For ex 1 :

-To T = [22 ,
3

,
83

,
[15 ,

63
,

91
,
7

,
83

,
[13

,
[23

,
923,

[33
, 233]

·di w = [7
,

6
,
3

,
8

,
1

,
2

,
3

, 67

-> First
,
we should convert T into a diograph where we pick any mode

a the root
,
and have all the edges "point down" : so

· In code
, this becomes a list G where G2u] is a listyd

u's children.

G = [C2 ,
3

,
83

,
95 , 63

,
27 ,

83
,
23

,
23

,
23

,
23

,
23]

·This makes it much easier to work with. Now we know where to start / the

"leaves" Calla all nodes where G(u] = <J (aka empty) .

How will we ensure that we solve - We need to ensure that when we solve subproblem rooted atnode u
,

we have

the subproblems in the right order ? already solved theS . p .
for each of us children.

-> SOLUTION : Use a topological ordering ! We want to solve the subproblems in

reverse topological order.D·

Ex · One possible topo sort : 21 ,
2

,
3

,
1

,
5

,
6

,
2

, 83
. The reverse of this

= the order in which we'll perform the recurrence.

MIS-Tree (T
,
w) :

What is the pseudocode ?
Convert T to dir . graph ( ?)

· Obtain the reverse to po ordering

din
,

dout = [0] en
,
[0] n in which we will solve the subproblems

node-order = Topo .
Sort (v) ~ V = set of vertices in T

always
returning it

Node-order = reverse (node-order) ·

- Q: are
we

u
= 2 ?

does
For uEV in "node-order" order :

the
max

from

din [u] = w[u]
For all of us children. If u is a

han
to beremo Lovers the "base cases" .or

the
rook for vET[u] : · ~ lear

,
then the line above this one

Convert d,[u] + = don,V]

d
on ,

[u] += max (d
,
[v]

, dours
return the max of OPTin,

return max (din[1] , door 21]) . &

↳Tou For the root of the tree
-

-> There are In subproblems (2 for each vertice) and each takes O(nl-time.

What is the running time? However, Since T is radir
,

the RT is not Oln's because computing the recurrence

For each R is 0(1Chcu(1)- time.

-> Since T is an undir .
TREE

,
there are exactly n-1 edges .

So total RT = O(n)

-> Similar concept to BFS RT for undir . graphs .



DP& Common Patterns-

patterns if the input is ...

1.
an array A of length fi E> [n] Caka fur all i = 1

,
... n) : OPTCi] = OPT/theoptimal

n ? Solution" given the "input" is now (ACI : i)) .
·

Max-in-Array
2- Fie <n> : OPTCi] = OPT given the "input" is now (A[l:n) .
3 .

* it [n] : OPT[i] = OPT given "input" is now (All : <])
,
that

somehow involves AZi]

·

Longestcreasing Subsequence
·

(kind() MIS in trees

OPTC: ][j] = OPT/optimal solution given the "input" is (AZi : j]).

What are common DP

I N - Fit [n] and FjeCi ,
n] Lake allj = i + 2

,
i + 2

...
-
n) :

· LPS

(A
,
1)

,
where A =

array
5 .

X it [n] and F jeE0 ,

1
,

... K3 : OPTi]Sj] = Opt given the

,

and K= positive integer ? inpur" is now (ACI : i]
, j)

· 0/1 knapsack

(A
,
B)

,
where A and B

6 .

F i < (m) and Fje [n >: OPT9i](j) = OPT given the in put is

are arrays of length m and a! (A[1 : <]
,

B[1 : j]
· Edit Distance

(T)
, where T = a rooted Free

7-
F UEV : OPTSU] = OPT given the input is (Tu) (tree rooted at u)

with vertex set V ?
8 -

VuE V : OPT [n] = OPT given the input is (Tu)
,

that somehow involves

u -

· MIS in Trees

HW :

- a-0

& &
leaf roo

pick ALi]- + can't Pick Aci + 1)
· special version

J BM trees

me t is a path



Ch
.
5 : Shortest Paths

What is this chapter about ? -> Ch 5 . 2-5 . 3 Consider variants of the Single-Source Shortest Path

(SSSP) problem

-> 5
.
% Considers the All-Pairs Shortest Path (APSP) problem.

What is the SSSP problem
? -> Input : (G

,
s) where G is a directed graph with edge lengths &.

· S is a vertex in G (SEV) that is the "source" vertex.

-> Goal : Return an

array d o length Ms . t · For all VEV
,

d[v] is the shortest

path from S to V

Have we done this problem before ! -> Yes ! If l = 1 for all edges Call edges have same length) ,
then running

BFS(G ,
S) would return the SSSPs .

How do we represent edge
-> We embed the edge length in the adjacency list of edges.

6 = [[(2, 8)
,Lea node I has anlengths in our dirgraphinput? &Ex :

J201 [(3 ,

- 1)]
,
[3] edge pointing toI 21 node 3 of length

&

- DAGDP-

What is the problem ? - Input : (G
,
S) where G is a DAG (directed acyclic graph) wedge lengths.

-> Goal : return the SSSD . e
. g-, for all reV

,
the shortest path from

nodes to mode v.

-> EX :

--
S = 1

Q08+ 0 =8

-

· Whenever the input to a problem is a DAG
,
it is helpful to look at the graph

intopological order (like EXabove .

What are the subproblems ? -> For all VEV
,

let OBTCV] denote the distance from sto v.

-> INTUITION :

comparing lengths of ways to get from I to K :

S

omes · AWS : [0
, 9

,
3

,

7
,
5]

&D · We choose "3" for d[3] biI -> We will return d = OPT -

2

3

3

Su

-
going directly from D- takes 5

2

but going D-B0- takes 9 + (- b) = 3

What is the base case ? - OPTIS] = 0 (distance from to itself) .



What is the recurrence ? - Look at all the choices to
get from str

· ARA
,
Check OPT[u] for all nodes u which are an in-neighbor Lika

" point to") v
. This represents the shortest path from s to an in-br of

~

· Add the distance from -V

·Choose the smallest option.

-> Formally ,
Fur all VFS

,
OPTCr] = min (OPTCu] + e((u ,

v())

For all u : (u
,
v)ELG)

· in code
,
the length of edge (u,

v) is the Indelement in the tople

(v
,

e) for G9u]

What is the pseudocode? We want to solve the subproblems in topological order.

-> Also
,

for every VFS
,
we need to look at the lengths of all of vis in-neighbors.

Initially ,
this info is not stored at G[v]

,
but at G (in-neighbor ny vJ .

· To make it easier
,

we will also save a graph G'where
every edge is reversed

and G[v] tells us the in-neighbors of vertice r .

· kind of "pre-computing" the in-neighbors of v.

DAG-DP (G
, 5) :

d = [0] +n > G'[v] lists V's in-neighbors
d[S] = 0 . sbase case

in G
,
and the edge lengths .

ordering = Topo -
Sort (G)

6 = G with each edge reversed

For VEV in "ordering" order :

for u in G'[V] :

& (v) = min (d[v]
,
d[n] + e(u

,
v))

return d

How would we create 6 - 6 = [2]] &n
6 = [[(2 ,

3)
,
(3

,
1)] ,

for u in VCGS : Pro 2)
,
[(1

,
2))

,
S(2

,33]]

for vin G[U] : 6 = [23
,
2(1

,
3)

,

36 , 973 ,
add u ,

1 to G[v] [ (1
, +(3

,
2(3

,
23]]

What is the running time ? - ToposortW/DFS is OCm + n)

-

Computing G' is 0(m + n)

->

computing &[v] takes O ( * of in-neighbors (v) - time . The sum of

in-degrees (aka edges ! ) is m
,

so the total RT is 0(m + n)



How else could we use the 10 in of -> To
9

find the longest paths instead of shortest ; chandedC-0] to

the DAGDP problem ? & [*]
,
and find max() instead of min(

->

Every DP has an underlying DAG

· The vertices are like subproblems

· The edges dependencies in the recurrence.

-> (1 this way ,
DAGDP is kind of a representation of all DP problems.

- Bellman - Fuud-

What is a negative cy cle ? -> A cycle in a dirgraph where the sum of the edge lengths is < 0.

- If we consider finding SSSP for a graph w/ negative cycles ,
the problem

becomes WP-hard (no poly-time al discovered yet).

Why do negative cycles Make ~ It becomes difficult to say what the "shortest path" for stor is
,

because you

SSSP harder ? could choose to cycle infinitely through a negative cycle of vertices
, because it

allows the length to get smaller & smaller to negative infinity
.

What is the problem statement?- > Input : (c
,
S)

, where G = a dirgraph wh no negative cycles ,
and

=) the source vertex .

- Goal : Return array& representing the SSSP
.

What are the subproblems ? - Unlike 5. I
,
in this problem G is not necessarily acyclic ,

so we can't utilize

Ipo-Sort to help us shrink & order the problems .

· Bur all VEV and je 50
,
1

, ...
n-23 where m = overtices

,
let

OpT[v][j] denote the length of the shortest path from Str
,

where we

can have at mostledges in our path.

· je our "budget" o edges ·
Kind of like 0/2 knapsack

What are the base cases?
I
- OPT[s][j] = 0 (path from S-s will use no edges) ·

For all j.

-> j goes from O-n-1 because a path starting at I has max n-2 edges ;

any more edges than that would mean you are repeating edges.

What we will return ? -> The column/list at OPTCJSn-1] Jaka
,

S
. p . For each ~ when allowed

to use as

many edges as you want

1 For all VFS
,

OPT9rJ50] = * (if we can't use any edges ,
the length to get to

j =

is 3) S 8

"go Ans

M ·



What is the recurrence ? -> For all VFS and j22 ,
the path will either :

· have at most j-1 edges ,
ala OPT[r][j-1] · basically ,

the length

of the path -r where we don't use the "option" to add I more edge .

OR,

· have jedges ,
in which case we use

any of the paths that lead to

an in-neighbor of r and have j-1 edges ,
and then we add on the

edge from in-neighbor-or as our "jth" edge.

-> We want the min . of these 2 choices . Formally
,

OPT [r3(j] = min (OPT[V][j-1] , minCoPTcucj-1 + eu,

& min for all modes a which are

In what order do we solve the
-> OPTCV](j] depends on OPT [v] 2j-13 ,

so we
in-neighbors of v.

subproblems ? will fill it out column-by-column , left-to-right.

· For every column g ,
calculate every d[v]Cj] according to the

recurrence.

What is the pseudocode ? Bellman-Ford (G
,
S) :

a = [b] + (n + n)

d[S][0] = 00 -base case

6) = G w/ each edge reversed

For j = z,.. - n - 1 : s so that we iterate column-by-column

For v E Vertices of G :
stark by setting

d[v][j) = d[v][j - 1] · OPT = Op+ [v](j- 1]
,

and then check

for u in G'[V] : 0 Callyr's in-neighbors
if we can do

better
& [r](j) = min (dCr >Cj] , duj9j - 13 + P(u,r) (

return &9 . J (n - 1]

What is the Running Time? -
There aren columns. Each takes (m + n) -

time
,

by we're basically performing-

DAG DP on each .

-> Total RT = 0 (n)(min) = mn + n2 = O(mns-time (bkm > n)



-

Dijkstra's Algorithm -

What is the problemstatement? - Find the SSSP
,

like in the other problems ,
but this time

,
all edge lengths

& are nonnegative .

Find shortest path from ser for all VEV .

-> Similar to Prim's (Ch .e) : keep picking the heaviest edge that adds a

new vertice

toumbus
-> EX : a =o6 d = [0

,
0

,
0

,
0

,
0. %1

D

%- 050I

What is the algorithm ? ->Sey all SSSP lengths initially to bea

-> Starking with node s
,
add s to your "bubble" and then process it

~

What does it mean to
> Process it" = relax (u ,

v) : see if we can decrease our "current

"process" an edge ? estimate
"

of distance from str by finding a node u that is an

in-neighbor of v
,

and calculating length(s,
r) to be length (S

,

u) +

length (u , v) .

Ex :DE · The SSSp for 1-3 is if we

go through

· node 2 rather than directly from 1 to 3
.

· after processing nodes = 2
,
we relax

D
edges (1 ,

1) and 11 ,
23 i

·

T
d = [0 ,

7
,
0

,
1

,
0

, %] I *

Which node do we process
-> The vertex with the smallest &Cv] value so far ; e . g ,

node that is
currently

of the node added next?
I

D

·

aka
,

is the path ser + path ven shorter than the current

next ? leas distance from S .

· Add this node to the bubble
,
then "process it" to relax its edges.

How do we relax the edges
-> For every out-neighbor u of mode V

,
check if (d[v > + 1(v , n)) < &[u]

shortest path for 5-u ?

D

I

37

·

T
·

T
↓ 2 2

·

ANSi
A

d= [0 ,
3

,
6

,
1

,
2

,
3]

8

To·To



Summary: What is the t Starting with nodes and then by choosing
the mode with the smallest

intuition for this alg ? Sr path-length ,
and until the bubble doesn't contain all vertices :

· add the mode (v) to the "bubble"

· "process" v by relaxing the edges , aka
,

for each out neighbor a Ofv ,

check if the length of ser plus the distance from ve is

smaller than the current value set for length (S-eu)

· Finally ,
return the array of shortest paths.

What is the pseudocode?

What is the RT ? - O(n2)



- Floyd-Warshall-

What is the APSP Problem? -> "All Pairs Shortest Path"

-> Input : a directed graph G with edge lengths (negative allowed) &
,

where G

has no negative cycles.

-> Goal : return an non array &
,

Where For all u
,
vEV

,
d[UJCV

is the length of the shortest path fromU to v

·

Basically Jame as Bellman-Ford
, except no specified S .

Why can't we just run -> We could
,

but the RT would be n

Bellman-Ford times ? - With DP
, we can do this Faster .

What are the subproblems ? -Instead of shrinking by the amount of edges we can use to get from u to

v Llike in B-F)
,

we shrink by reducing the set of vertices
,

w
,
that

We are allowed to use to get from a for

-> For all uEEl , ... n3
,
all real .....

n3
,
and all I E50 ,

1, ... n3 ,

·PTCu][v][r] will denote the length of the S . p. From user with

only vertices [1
,
...

r3 available as intermediate vertices.

· total of non- <n + 1) = n subproblems

What will we return ? -> The "table r = n" Jaka , the table of &r path lengths when

r = m .I
-

each table has the s . p . s from all to all v when we are allowed

· Think of OPTCU]Cr]r] as a set of E nxn tables where

- o use [r] vertices .

-> RET : OPTI. JC. ][n]
·

What is the base case ? -> If v = 0
,

we can't use any
intermediate vertices

, so OPT[u][v][0]

will be a UNLESS :

·

U = v
,

in which case OPT(u][v][0] = 0
.

OR

· if (u
,
v) is an edge in G

,
in which case OPTCu](r](02 = (u

,
v)

.

r = 0 2 r = 12 r = n2

:...... O

8
G= 2

S

8

2...

I- I



What is the recurrence ? - The table for ren will rely on the table for n-1
,
and so on.

(Relying on previous table)

- If r21
,

then we are allowed to use modes I-r along the way from user .

There are 2 options for OPTCuS[v][r]

2)
Don't use moder

,
in which case OPT [u][v][r] = OPTCu](r]Cr-1]

2)
Use node r

,
in which case we want the distance from mode u to moder ,

plus the distance from moder to mode v.

· We want to obtain these values from the sp wasn't allowed as an intermediate

Vertex
,

aka :

OPTCn][r](r-1] and OPTIS(uIEr-1]

↓ ↓

dist(u ,
r) dist(r ,

vS

-> We want the minimum of these options. Formally

OPT[u][v](r] = min E OPT [u][v][r-13
,

OPTCuJCrJCr-1] + OPT[r]CvJEr-1]

What is the pseudocode ? Floyd-Warshall (6) :

d = ( * ] + (nxn + (n + 1))

For u in range (1
,
... n) : · base case

:Filling out table r = 0

& Cus< u][0] = 0 IFor vEG[u] :

&[u][v]20] =(u
,
v]

For r in range (1 ,
.... n) :

for u in range (1 ... n) : I · for r
,
u

,
v = v

for v in range (1 ....
n) :

&[n][r > Cr] = min (d[u][r]2r-1]
,

deusCr]cr-13 + dar]9r]Cr - 1)

return d2. 79][n] · · return table

What is the RT ? Tnxnxn subproblems so 0 (M3) - time.



Midterm 2 Study Guide-Dynamic Programming
L

.
I . S

.

A = [3 ,
%

, 1
, 5

,
2

,
3

, 6
,
17 · subproblems : OPT [i] = (ISending on Ati) Return : Max element in OPT

OPT (1) = 1
·

Base Case : OPT 21] = 1

OPTC2] = 2
OPTS] = C 1 ,

2
,

1
,
3

,
2

,
3

,
5

,
17

OPT 23] = 2
ANS =

J

-> Intuition : For OPTCi]
,
look at all elements A[1 : i) Cakael elements up to element is

· Narrow down & only look at elements & in ACI : i) where A[x] < AZi) (blc need an increasing
sequence)

· Of all of these
,

check which one has the max OPT value
,

OPTX] .

·

OPTi] = OPT[X] + 2
.

-> Recurrence : OPTCi) = 2 + max(OPT(j)) for C = Ejlj< ; and Aj]ALi] 3
.

jac
-> ALG :

d = [2] en (because
every his will have at least length 11

For i = 2
...

n :
-> RT : OCn2) blc 2 for loops

For j = 2, ...

: - 1 :

if A[j] < A[iS :

d[i) = max(d[i]
, d[j] + 1)

return max (d)

L
.

P
.
S.

->Problem Statement : Find longest sequence of characters in A S .
t

. the sequence is a palindrome.

· The sequence doesn't have to be subsequent in A .
For ex

,

abba is a P
.S. of abracadabra

A =

acbbaj
·Subproblems : OPTCi](j) = length y <PS for Ati : j] ·

E
. g .,

OPTC2595) =

OPT :
a 1 b b a

A22 : 5] = ebba

a I p · Return : OPT[1]n]

2 I
· Base Cases : for all i = 1

, . . .n , OPTCi](i] = I
i

b I
· Intuition :

b I
· If AZi] = Alj]

,

we have a PS of at least length 2 just by the subsequence
9

I ·

ACi]A2j) . " But if the chars between ; and j also have a palindrome,

-> RT : OCn2) our LPS could be even longer .

So :

·

CASE 1 : If ACi] = ACj]
, OPTCiS[j) = 2 + OPTSi + 1]2j - 1]

-

the substring between 1 and j ,
A[i + 2 : j - 2)

-> If A2i] #A[j] ,
then we want to compare the LPS for the Substring without ASi)- aka OPT[i + 2][j]

- and the substring Wo ASj]- aka OPT[i]Cj- 17
.

We keep whichever is larger .
So :

·

CASE 2 : If ACi] FACTS
, OPTCiS[j] = max(OPTCi +1]cjs , OPTCiJaj-13) .



Midterm 2 Study Guide-Dynamic Programming
0/2 Knapsack

-> Problem Statement : (v
,
w , B) where B = weight limit

,and for item Choices
,

vCi] = value of item

i and wais = weight of item i

· Return the maximum value of the knapsack where we can only take ALLor NONs of each item.

B = - v = [ 3
,
2

,
23 w = [ 1 ,

6
,
3]

is 2 + ·Subproblems : i = 2, ...n and j = 0. .. - B .

OPTEi( < j] = max value of knapsack

3 3 33 if we can only choose items 1 ....; and the weight limit is %.

333 · Base Case : For all : where j = 0
,

OPTZiICO) = 0oppo, 335 ·

Base Case : For all jwhere : = 2
,

if wCi]<j , OPTCIS[j] = VCi]
.

Else
,
if whilj,

OPTC1][j] = 0.

· Return : OPT[n][B) (bottom right square)

Intuition : Fill out table row by row
,
aka each subproblem introducing a new possible item.

-> If Wi]3j ,
we can't possibly add item i to our bug ,

so our max value is the same as the 1 where item I Wasn't an option :

·

CASE 2 : OPT(i](j) = OPT[i-1]< j]

-> If w(i] <j and we still want to add item i to our bag ,
we have a value my at least vCi]. After adding item i

,
we have

(j- whi]) pounds of space left
. OPTC : -135j-whi]] will give us the maximum value we can obtain to fill the rest of the

bag . We add vail to this.

·

CASE 2A : OPTCi][j) = OPTCi-1]2j - w(il] + v(i]

-> If W(i] < j and we still DON'T want to add item i to our bag ,

our max value is the same as if item I Wasn't an option :

·

CASE 2B : OPTiS < j] = OPTCi-1][j]

-> We want the max of 2A and2B For Case 2
.

-> Recurrence : For all it 2:

OPT [i](j) = E OPTCi-139j] if Waibj ,
and

max (OPTCi-1(j) , Opt[i-1]2j-w(i]] + v9i]) otherwise.

-> RT : O(nr)



Midterm 2 Study Guide-Dynamic Programming
Edit Distance

-> p
. S .: Given two strings of lengthI and 1 (A

, B),return the min.. of"moves" needed to turn str A into StrB ...aka

theledit distance'

-> "Moves" : Insert a character anywhere in A
,
delete a character anywhere from A

,
or replace any

I character in Aw/ another·

-> subproblems : For i = 0, ... m and j = 0
,
.. n

, OPT[i]2j] = edit distance to turn A2I : :] into B21 : j].
J

-> Return : OPT[M][n] j= 0 represents Bas the empty
& e .g .

OPT [2][3) : turning "st" into "wat"

OPT
11 wai + e r

string ,

" "

119 8 I 238 S -> Base Cases : Editing an empty Str A into a string B of length j will take j
&

6 S I j 2383 insertions
,

so OPT[O] [j] = j For all j
.

+ 222238 · same concept for editing StrA of length is into empty string B via; deletions

a 3323 38
(OPT[iJCO] = 1 For all i)

.

-(0-338- ANS

&
Ex: OPTC3)(8) ,

"sta" "Wate"

· Recurrence : For is 1 and j11 ,
we have to edit All : i] St . its last character = B2j] .

3 OPTIONS to do this :

1) Edit Atl : i] into BS1 : j- 1) and then insert BLj] S ta swat s insert "e"- > Wate

· AKA
, OPT[i][j - 1) + 1 (for the insertion (

2)
[dit AC2 : i - 13 into BC2 : j) then delete A [i]

Sta
-

wate a - delete "a"-wate
W -

· AIA
,

OPT (i-1[j] + 1 (For the deletion (

3)
Scit All : i - 13 into B[1 : j - 1) then replace Alis with B(j] Stat Wat - replace "a"With "e"-wate

~

· If ASi) # BSj] ,
then OPTCi]< j] = OPTCi -1) [j - 13 + 1

·

If ACi] = B4j] ,
then we don't actually need to spend a "more" on the replacement

,
so OPTCJ(j) = OPT2i-1] <j-1]

-> Take the min of these 3 options .

Fill table T-D
,
C-to-R

.

-> RT : O(mn)



Midterm 2 Study Guide-Dynamic Programming
Ind . Set in Trees

-> Input: (T
,
w) where T = a tree rooted at vertex 1 and w= an array of length (Noy nodes) where

w(u] = the positive int "weight" of node u. -To
- = node

· Basically a free we weighted nodes.

· Tree = acyclic ,
connected undir . graph with n-1 edges.

·di
-> Goal : return weight of the independent set (subset of nodes where Nows of them have an edge to each other) with the

maximum total weight of all the nodes.
①

-> subproblems : For all uEV
,

+Lu) = the subtree rooted at mode u
.
3 . g.

T22) =B. For all T(u) subtrees :

G
·

OPT
in Cub = the weight of the MIS of T(u) that must include mode u.

d d
·

OPT[u) = weight of MIS of TLu) that CANNOT includenode

OPT92]
= 0 OPT222 :21

DP Patterns

-> Input= Array of length N :

2. F i < [n] laka For all i = 1
....

n) : OPTCi] = OPT/the optimal soln"given their put is now (ACI : i))
.

2 Fie <n> : OPTCi] = OPT given the "input" is now (A[lin) .
3. Vit [n] : OPT[i] = OPT given "input" is now (AC1 : <])

,
that

somehow involves AZi]

· LIS : required to end on element A(i]

4 . Vie [m] and FjeCi ,
n] Lakaallj = i + 2

,
i + 2

-
--

n) :

OPTC: ][j] = OPT/optimal solution given the "input" is (AZi : j]).

· LPS : Finding upS for Asi : j]

-> Input = (A
,
k)

, Array of length n and int K:

5 · Vie[n] and F jeED ,

1
,

... K3 : OPTEi]Sj] = OPT given the "input" is now (ACI : is
, j)

· 0/1 knapsack : find max value if we have weight limit and items 1-i.

-> Input = (A
, B)

, Arrays of length m and n :

6.
Fiz (m) and Fje [n >: OPTSiS(j) = OPT given the input is (AT2 : i)

,
B11 : j] (

· Edit Distance : edit dist to turn ACI : i) into BS1: j] ·

-> Input = rooted tree t with vertex Set Vi

1
FuEV : OPTSU] = OPT given the input is (Tu) (tree rooked at us

8
VuE V : OPT [u] = OPT given the input is (Tul

,

that somehow involves U.



Midterm 2 Study Guide-Shortest Paths

DAGDP

-> P
.

S .: Input = (G
,
s) where G = directed

, acyclic graph with edge lengths & and SeV .

Find the lengths of the shortest paths from Sev for all VEV . Return in an array &

-> Subproblems : OPT[v] = length of S .
P

.
from Sev for all ver .

We return d = OPT .

-> Intuition : Each time we consider anodeu
,

we consider all of its in-neighbors (nodes pointing to it) . For each

in-neighbor X
, the potential path length for stu = OPT[x] + len (X

,
u) - the SP to x + the length of path

From X tou.

·We must "consider" a mode only AFTER we have "considered"Caka computed Opi) each of its in-neighbors , so we

should consider the nodes in TOPO-ORDER.

-> Base Casa : OPT[S] = 0

-> Recurrence : Choose the minimum (OPTCx] + &(*
,
n)) for all in-neighbors of v.

· OPTCv3 = min OPT[u] + R(u
,
r)

u = (u,v)EE

-> ALGORITHM :

2) initializz d = [b] en and dCs) = 0

2)

Construct G' = Reverse graphing G to get all in-neighbors of mode u in graph 6.

3) In Topo- Sort Order : For v in V :

For each out-neighbor of vin G' (for ueG'(US) :

& (v) = min (d[r>
,

daus + flu
,
r)) whe updates for each pos . in-neighbor

-> RT : 0 (m+ n)



Midterm 2 Study Guide-Shortest Paths

Bellman-Ford

-> P
.

S .: Return array of shortest paths from nodes for (G
,
s) where G = directed graph with no negative

Cycles . Edgelengths CAN be negative ·

-> Subproblems : A path from sto anya can have Bax n-l edges. For all veV and jeE0, 1 ....
n- 13,

OPTCV](j) = The length of the path from ser using at Most j edges.

-> Return : List at OPTC][n-1) Lake no budget on num
. of edges

-> Base Case : OPTCs](j] = 0 For all j ·
OPTSrS[0] = * for all VFS (can't Form path W/ O edges) ·

-> Recurrence : For all VFS & J21 ,

the path has 2 Options :

20 Do not utilize the ability to use all jedges . Only use ju] edges ,
aka same soln as that where budget = j-1

·

CASE 1 : OPTCV) (j] = OPTCr][j- 1]

20
Utilize all jedges .

Our "jth edge" will be the one pointing to !
,

so it must come From an in-neighbor g 00v

Therefore
,

for all in-neighbors u ofv
,

find OPT[u](j - 13 (the Sp with j-l edges) ,and add R(u
,
v) bla its the

jth edge.

· CASE 2 : min (OPTCuS(j-1] + 1(u
,
v)) For all u = in-neighbor of V

.

-> Take the minimum of the 2 cases
.

-> Fill out table column-by-column , left-to-right. Because OPTCvJ(j] depends on prev column
,

OPTCV)(j - 1).

-> RT : O (mn]

Dijkstra's
-> ps : SSSP for (G ,

5) where all edge lengths are non-negative.

-> Intritive : We initialize all the SP lengths to be o (akz d = (x] * n)
.
d(s) = 0 bl path From ses .

2) Choose u
,

the modew/ lowest & value
. I must also NOT be in set S

.

At first
,

this will be s (u = s) .

2) Add a to our set of processed vertices S
.

3) Look at all out-neighbors of of u .
d[n] = Sp from Sen

,
so a possible path from so

could be d[uj + &(u
,x)

· If this possible path is < current SP For N
, update the SP

. aka

&(x) = min (d[x]
,

dCu) + 1(n
,
x) where is the node we are currently processing .

4)
Repeat Steps 1-3 until all modes are in set 3. Return d.

*
3 36

D > D
·

T ·

T6 6

-> RT : 0 (2)



Midterm 2 Study Guide-Shortest Paths

Floyd-Warshall
->pS : Given graph G

,
Find APSP : an mxn table depicting the Sp from u er for all u

,
rev

Laka all possible pairs of nodes

->Subproblems : For all u
,
v EV and NESO

....
n 3

,
OPTSu][v] (r] = length of Sp from u - - where we can

only use nodes [1 , ... r 3 to get froma to r

-> Return : The table OPTCJS] [n] - als all nodes allowed as intermediate
.

-> Base Case : When r = 0,

· OPTCubCr](0] = 0 For all ur when y = r
,

· OPTCuS[r>20] = e(u
,
v) for all u

,
1 When Jan edge user ,

· and OPTCu][v >[0] = * otherwise
base

-> Recurrence : Fill the 3D array table by table
,

aka r = 0
,
r = 1

,
so on. The OPTCJC350) table was our case.

For all OPT[u](v][r] when21
,

we have 2 options :

2 Don't use the newly allowed intermediate vertex W
,

in which case OPTCSCScr] = OPTCu]<v][r-17
.

28 Use moder in the middle of the path from utv .
In this case

,
we want to add up length <Sp from

u + r) + length (Sp from rBV)
. Specifically ,

we want these lengths from BEFORE & was allowed

as an intermediate vertex
. AKA OPTCvJCv]9r] = OPTCu](r]Cr-1] + OPT [r][v]ar-1]

-> Take the min of the 2 options &

-> RT : n x nxn matrix so 0 (n3)



Ch . 6 : Flows andCuts

What is the maximum flow ~ RECALL: Shortest Path problems are about findingthe Fastest way to get a

problem ? truck from point to point t

-> Maximum Flow problems sending as many trucks as possible from s to t

What is a flow network ? san input (G
,
s

,
t) where

· G = connected
,
directed graph where each edge e has a "capacity"

c(e) +

(positive int)

· s = a mode in 6 that represents the source vertex.

· Assume that no edges point to s

· t = a mode ina that represents the sink vertex
.

· Assume that no edges are pointing out of to

· Assume that st

~ EX : thing of the graph as a map of roads to checkpoints. We want to maximize

the amt. of stuff we can send in trucks from point I to point I

· Each Road has a "limit" on

theamount
of

trucks
that can be onit is

"Source"5 "sink"
"Capacity ofneedon

RECALL : What is a cut? A subset Sofvertices

· goor(s) = ScurstE : UES
,
v@S3 denotes the set of edges leaving/I

etgiv(s)

e fort (S)

2

crossing the cut 161 they point from a vertex ins to a vertex not in S).

·Sir(s) = Glu ,rIEE : UqS
, veS3 denotes the set of edges entering S.

-> S is an S-tcut if SES AND ES

What is a Flow ? -> A function F : E SIR
...

a function that gives a number to each edge in E (6) .

What are foot( 1 and < For a cut s (which could also just be a single vertex
,
e

.g. S = Su3)
,

for" (5)

fin() ? represents the amount of flow leaving S ,
e . g . For all edges (EAVINGS

,
the sum

of the "Flows" for each of those edges .

fort(s) : E f(e)

-> fines = E E(e).... the amount of flow entering S
.

-> When S is a single vertex
,
e .g. S = Su3 ,

we write fout(u) instead of Fort (213) .



What does it mean for a Flow 1. Capacity Constraints : For every edgee ,
the amount of "flow" on the edge

is not greater than its capacity.
· For all eff

,
0 = f(e) = C(e)

2.
Conservation : For

every vertex except 3 and t
,

the amount of flow entering v = the

amount of flow leaving v.

What is the value of a flow f ? -Defined as If1
,

the total amount of flow leaving vertex s.

· IF1 = foot (s)

What is a maximum Flow ? - Given (G ,
S

.
+)

,
it is a Flow &where IF1 is maximized.

What is the capacity of a cuts ? - The sum of the capacities of all edges leaving the cut.

· clss = E C(e)

2 for" (s)

What is a minimums-tcut ? -Ans-tcurS S .t . the capacity (CS) is minimized.

to be feasible ?

I
①

· F vEU where US ,
ret : fin(v) = foot (v)

How would you represent a flow a The same way we represent edges that have lengths , weights ,
or capacity.

in code? -> Ex : De500 ,
S = 2 and t = N

. Let the red numbers = the flow

For each edge . Then we would represent Gas :

G = [[(2 ,
5)]

,
[B ,

833
,
[18

,
103]

,
[7] and Fas :

F = [2(2 , 1)3
,
[13

,
233

,
[20 , 533

,
233 .

- Ford-Fulkerson -

What is the inpur and goal ? -INPUT : A Flow network (G
,
s

,
+)

-> GOAL: Return a Maximum S-t Flow .
AKA a Flow wh the max sum of all flow leavings

.

What is a simple example? · Ex : G = De+0 ,
S = 2

,
t = 1

.

· #((2-3)) can be at most un due to capacity constraint
,

and fin (2) must = fort(2)

so f([2 + 2)) must also be 0 . Finally F(3-1) will also have to be 8
.

· Ans : F = [ [(2 ,
+33

,
[(3 ,

833
,

[18 ,
633

,
[3]

What are some other examples ? - G =

P
ANS : F =

a
-> G =

3 .

" 00
,
:

IF1
= 9

ID 3d t 5
56

NOTE : If I cannot possibly be greater than Fir(t).



What is one natural approach (Use DFS (or other path Finding alg) to find a path in 6 FromSet.

to this problem ?
-> For each possible path P

,
For each edge (4

,
v) in P,

·

set Ap = min eles
,
aka the minimum capacity of all edges in P.

etp

· increase the flow of each edge in P by Ap ,
ala f(e) = f(e) + Ap

· In G
,

decrease the capacity of each edge in P by Dp ,
so as to

represent the "remaining capacity" of e after we have considered a possible

path P... aka <(e) = <(e) - Ap

·
Repeat above process for all paths until we can't make any

more progress.

Will this approach always be NO ! It works if G happens to be ans-t path,but not in
general

.

correct ? ->

Why? Because once we consider one s- + path p what isnit actually optimal ,

it affects how we treat the other paths & then our final answer too
.

· We have to be able to undo the changes made to F(e) and < (e) when we

consider a path P.

What is the correct approach Rather than searching
for s-t paths to consider in G

,
search for them in

to the Ford- Fullerson problem? the residual network Go of G.

·

basically ,
use another graphGf to track updates made after considering

2 path P
. Namely

,
the "remaining capacities"

,
and the things that we can undo .

· We need to find the residual network for G
, given our current "Working" flow f.

How do we find the residual network ? · It tracks the leftover capacities & how much we can undo.

Residual (G ,
f) :

G p = (v(G)
, Ep = 07 , start off byhaving Boedges in Gr

For e = (u
,
v) ef(6) : · (for each edge uv in the oggraph G) :

Forward

if fle) < <(e) :

↓
if the flow of e is less than the real capacity of e in G

,

edge
· add (u

,
v) to Elbp)

we should add that edge to our residual Graph.

set <(e) in Gp = <(e) - Flet
· In Gr

,

we should set ces to be the remaining capacity-

backwards

if F(e) > 0 :

-
if we are sending flow on edgee ,

we account for allowing us

edge
~ rev = (v

,
u)

to "undo" the Change by also adding the backwards/

add rev to ELGp)
reversed edge to G

set ((rev) in Gr = f(e) -

·

Why? Ble if we end up using (u ,
v) in our final flow

,
then

return Gp
We want to decrease the amt of flow being sent on <u

,)

· So we should set capacity of the reversed edge to

be fle ... alla the amount that we can undo



So what will our actual "Very similar to our first approach ,except we do not modify G and instead

AG for Ford-Fulkerson be? Search for s-tpaths P in Go
-> For each s-t path Pin Gp ,

set Ap = the min . Capacity of all edges in P

· then, augment F along P by the min
.

residual capacitycf(e) over all

edges in P (eEP) ...
aka

,
"increase" fle) by DP for all edges in P.

· then
, update Gp by setting Gp = Residual (G

,
8).

What is the algorithm ? Ford-Fulkerson (G
,
5

, +) :

F = [] a number of edges

for all etE(G) :

↑ (e) = 0

Gr = G

while Go has an s-t path P :

Ap = minepq(e)
for all e = Cu

,
v) in P :

if e is a forward edge :

f(u
,
v) = f(u

,
v) + Dp

else :

F(v
,
u) = F(v

,
u) - Dp

Gr = Residual (G
,
B)

return f

Example problem ?
· Let G = [[(2, b)

,
(3 .

51]
,
[13

,
8)

,
28 ,

3)]
,
[18 , 6) 3

,
23]

. Initially , Gp = 6 and

our first S-1 path is highlighted below :

63

,G =D 3d 50 Gr=D 3d
59 6

· p = 1 + 2 + 3 5

· Dp = 6

· P(e) For e = 1 + 2
,
2+3

,
and 3 + 0 = F(e) + Dp = 6 (bkc F(e) =0 For alle

, initially

· F =

-
⑮D

-> New Residual graph Gp :

6 ② 3
3

I

((e) - F(e) = 8 - 6 = 2 D a

2.
crev) = P(e) = 6

2 6
D

5
3. F(e) = 6 is NOT <Cel = 6

,
so we don't add · 63

2 = Lu ,
> to Gp .

We only add ev



What is the next step ?I Look for a new s-t path P in Gp :

Gf =
6 ②

G = 63 D
D 3 50 26

D

59 6 5

· 6

· p = 1 - 3 -) y

· Dp = 3

· Ple> For e = 1 + 3
,
3 + 2

,
and 2 - N :

· It3 is find-edge ,
so f(2+3) = 0 + 3 = 3

· 32 is backward. F(v
,
u) = F (213) = 6

· F(2+ 3) = 3 - 3 = 3

· f(2-5) = 0 + 3 = 3

· F =

-03 ·
3 i

-> New Residual graph Gp :

↳ Or
D

53

3

⑧
3

<(2)- F(e) = 2 W 6

·

What is the answer ? -> There are no more s-1 paths in Op
,
so we return with 1816 + 3 = 9 :

-03
· idN

How can we check if our -let S = Ev) visanode in G that is reachable from in the last

↓
flow value is correct ? residual graph Gp3

aka nodes that are directly

· A sex of vertices (acut
reachable by ... from a single edge

·
Let <(S) = the sum of the capacities of all edges leaving the cut-in the o .

g.

graph .

-> If we solved the problem correctly ,
then (s) = IF1 .

Example ? -> In the EXabove ,
here was our final Gf :

↳ Or
· S = 23 , 13

D
3

53

3

⑧

c(s) = 2 W 6

·
What is the RT ? - In each iteration

,
the value of theFlow

,
If1

,
increases by Dp (and Apalways 12)

·
So the ALG makes at most iterations

,
where v = value of max . Flow

->

Using DFS or a similar pathfindingly amounts to a total of O(M) time per iteration,

so the total RT is O (mr)



6 .
2

,6 .3 : Bipartite Matching ; Bipartite Vertex Cover

What is a bipartite graph ?
· An undirected graph G where all the vertices in G can be split into 2 groups

L and R S .
t . every edge in G has exactly one endpoint in L.

·

aka every edge goes from a node in 573 to a node in ER3

·

no edges whose endpoints are both in the same
group.

-> EX : ① L = 21 ,
4

,53

R = G6 ,
2

,
33

* ②

⑤ ③

-> Given a bipartite graph ,
assume that we car label each vertex w/ either Lor R in

O(m + n) time.

What is a matching ?
· A subset of edges where no edges in the set share an end point.

· EX : In graph above
,

51
,
63 and 54

,
23 are matching , but 51

,
6

,
2

,
83 is not.

What is a use case for this Let the nodes in EL3 kids & the nodes in ER3 gifts. Each child should get at most

concept? one gift , and we want to find the max
.

# Of kids who can get the gifts they want.

Bipartite Matching
-

· An application of the maximum Flow problem.

What is the input & Goal ? ~ Input : a bipartite graph
G = (LUR ,

5)

· Goal : Return a maximum (largest size matching in G.

What can we say about a I · If My and M2 are matchings ,
the set My = Me & M2 is also a matching

.

matching ?
· RECALL: "M" = intersection = elements in BOTH x and y

· PROOF : Fe
,e2 EMz & M2

,
e

,

and en are both in Mr
. This implies that

e & e don't share an endpoint.

· If an edge is in My
,

it is in both M, & M2
,

so they can't share an end point.

What is the algorithm idea ? · We want to convert this graph to a directed graph with capacitized edges - aka a flow-

So that we can use Ford-Fulkerson
.

2) Go (6 , 3
,
7)

2)
F = max flow convert to a matching

What are the steps to convert>To construct 61 = (V'E') From G = (V
,
E) and V = LUR

G into aFlow ?
->

add s and I as new vertices : v = V UES
,
+3

2-

E consists of a set of edges ,
all of which span between a node in Land a node in R.

So to make this directed
, for every edge (u

,
v) in E where YEL and veR

,
add a

directed edge (n (v) (fomLtoR) in E
. ED ⑳

G' =
①

3. ⑧For all neL ,
add an edge (S ,

u) to E'

↑.

For all VER
,
add an edge (v ,

+) to E.
⑤T



How do we add the capacities ?
5

. Sex all of the new edges (e . g. those leavings ,
and those entering + to have (e) = 1

Set all of the old edges (e .g . those going from L-R) to have capacity ((e) = n = # of

vertices in 0 . g. graph. G' =

EX
D ⑳ D

G = - 38
* ②

&

⑤
6 S-0

⑤ ↳. "o&

What do we do now? Mun Ford-Fulkerson to find the maximum Flow !

-> Then
, return all the edges in G where F(e) > O Laka edges thatF sends Flow" on).

What is the Algorithm? Bipartite-Matching (G) :

G = (v) = V
,
E = E)

direct every edge in E'from L to R

For all e E'i

C (e) = n(aka (V(G)))

add S
,
t to VI

for all uEL :

add (s
,
us to E'with capacity I

For all vER :

add (v
,
t to E ' with capacity 1

↑ = Ford-Fulkerson (G
,

S
,
+)

return M= all eeE' where F(e) = 13I
6 .

· The maxFlow IFIEC (S) for an s- + crt.

6

What is the RT ? - Constructing G" and M takes OCm + ns-time

-> Running # F on (G2
,
s

,
+) takes Olmns-time

-> Total Rt = O (m+ n) + O <Mn) = O(mn)

- Bipartite Vertex cover-

RECALL : What is the capacity
-> The Sum of the capacities of all edges leaving the cut.

of a art ?
· clss = E C(e)

2 for" (s)

REALL: What is a minimum
-> An - -t curS S .t . the capacity (CS) is minimized .

5- + cut ! · A subset S that includes [S3 and excludes [13

What is the max-flow-min-cut -> the max .
#low value over all Feasible S-tflows Foragraph G

,
181

,
is always going to

theorem ? be equal to the capacity (CS) of the S- + cuts with the minimum capacity.

·

max Ifl = min

S-t cu+ssS)



How can we find the minimum :Using Ford-Fulkerson !

S-t cut of a Flow ? · Run F-F to find the maximum flow of a flow network

· The set of vertices reachable from S in the last Residual Graph Gp is

actually our min . S-t cut !!

·

Simply run BFS (last Residual Graph ,
5) to return the set of all nodes reachable

From 5 .

What is a vertex cover ? " (VC) given a graph G
,

a vertex cover is a subsets of vertices S . t . every edge in

G has at least one endpoint in S
.

c EX : D ⑳ ① ⑳
are both VCs of this graph . Every

and

* ② * ② edge touches a node in S.

⑤ ③ ⑤ ③

S = 21 ,
1

,
53 S = E1 ,

1
,
33

What is the Bipartite Vertex Lover - Input : a bipartite graph G = (LVR
,

2)

problem ?
~ Goal : Return a minimum vertex cover of G laka least amt of vertices possible

How do we solve this problem? -

Using Ford Fulkerson ! We want to use the minimum s-t cut findable using
F-F,

and construct our max V-C from it.

1) Convert G into (65 ,
4) Following the same process as that in 6 . 2

2)
Run Ford-Frikerson on G'

,
s

,
t

3)
Let Gp = the last Residual Graph given by F-F

.
Run BFS on (Gp

,
3) to

Obtain all modes reachable by Sin Gp . This becomes our S = the minimum s-t

cut in G.

4)
Convert S into our final answer

,
the min UC in G.

How do we use the min . S-tcut
-> Given the b . p. graph G

,
with sets of nodes Land R

,
AND given our min

.

S-t cutS ,

to obtain the min
.
UC ? the set of nodes representing the min UC is :

· All of the nodes in L which are NOT INS (aka L-5 aka (/S
, Formally) ,

AND

· All of the modes in R which are ALSO INS Jaka RMS (

-> AKA : Ans = (LIS) v(RMS)

Example? -> G = D ⑳ and
G' =

-
D

6

38
* ②

&

⑤
6 S-0

⑤ ③ p : "so
"After running F-F, our last Residual Graph is :

Y003-> Mins- + cry = BFS(Gp
,
s) = S = ES3 ⑤000

-> (h(S) = 21
,

6
,
33

. (RMS) = 23 &I
-> ANS : VI cover = E1

,
1

, 53



What is the RT of Min
-> Aly is almost Identical to 6 . 2

,
so RT = 0 (mm)

vertex cover ?

SUMMARY : How did we solvet to solve bipartite matching ,
instead of solving it directly ,

we converted

problems 6 . 2 and 6 . 3 ? it to a diff problem-finding max flow - and translated the answer to get

our solution .

· AKA
,

we reduced max . bipartite matching to max .

Flow

-> To solve min . Vertex cover
,
we reduced it to minimum s- + cut.



hT: NP Hardne2 SS

What have the previous its & patterns for solving problems in polynomial time.Chapters -

Strateg
↑

been about ?

What is ch .7 about ? ->

showing that a problem cannot be solved in polynomial time

What does it mean for a
-> Wproblem e don't know if it can be solved in polynomial-time

to be NP-hard ? ·Maybe it can
... but no one has found an algorithm yet. And we believe

that it probably can't

How do we prove that a problem sw ith a comparison . For ex
,

let Band B be 2 "decision problems". When

is NP-hard ? we say AEB
,
it means "A is at most as hard as B"

,
and "Bis at least

as hard as A"
.

· aka
, comparing the relative difficulties of various problems·

ful? - BK ifWhy is this comparison meaning one day someone discovers that
,
for ex

, problem A is actually hard (not just

What is a decision problem ? - A problem that is comprised of an input specification
,
and a yes no problem Q.

· A-> opposed to optimization problems ,
like LIS

, Knapsack ,
MST

,
etc. etc

.,
where

the output is a specific solution.

Examples ? I NP-hard) ,
then it proves that B is also hard.

2k !

How do we translate optimization
-

By introducing an additional input K
,
and asking if the optimal value is at

problems into decision ones ? leask K-for minimization problems - or at most 1-for maximization problems.

-> ToSdre the "decision version"
, you just solve the optimization version & compare the output to 1.

Optimization Version & Decision Version

LIS : · Input = list A · Input : (A
,
1)

· Output = length of LIS in A
·

Q = Is the length of the LIS in A2 17 ?

MST : ·

Input : graph G
·

Input :(G
,
k)

·

Output : weight of the MST
·Q = Is the weight of the MST in GK Y

8/1 knap · Input : (v
,
w

,
B) ·

Input : (v
,
w

,
B

,
1)

Sack :

·

Output : max value to Bil
·

Q = is the value of the optimal solution

in backpack

-

Maximum · Input : (G ,s ,
+ ) ·

Input : G
,
S , t

,
1

Flow :
·

Output : value of Max Flow ·

Q = is the value of the Max S-tFlow

2k ?



7.1 : Reductions ,
P

,
and WP

What is the class P, -> The set of all decision problems that can be solved in polynomial time

informally ? p =& A) A is a decison problem that can be solved in poly-time 3

Example problems in P ? -> LIS
,
MST

,
bipartite matching ,

vertex cover
,

etc.

-> For Ex : given an array A and an integer 1 ,
we can determine whether A has

an increasing subsequence whose length is 1K in polynomial time.

What is the class NP
,informally?

-> The set of all decision problems that can be solved using bruke force.

· aka pretty much every problem we look at
, including every one we

will look at in this class.

-> NP = Mondeterministic poly time

What is known & not known about -> KNOWN : All problems in Pare in NP ... PINP

- UNKNOWN : IS P = NP ? Aka
,
are all the NP-hard problems actually easy ,

but we

haven't solved them yet?

· We believe P NP
,

but we don't know.

How do we prove that a problem >A reduction :

is not solvable in poly-time ? 1 Imagine problems A and B
.
We kNow already that A CP (not poly-time

solvable) .
We don't know about B

2
Assume for contradiction that BCP & has a polytime algorithm ,

ALGB
.

3.
We "reduce" every input into problem A into an input to problem B S .

+.

·

Any/every time the input would be accepted by A
,
the transformed input is

also accepted by B.

the classes P & Np ? I
For A

,
we solve inputs to problem A by First "transforming" the input, then

·

Any time the input would be rejected by A
,

the transformed input is

also rejected by B.

> To specify the nature of these "input transformations"
,
we have to write an algorithm

that takes ANY input n A and converts it to some input to B S .t .
the rules above

Lim step 3) are satisfied
.

8.
Now that we have this alg ,

instead of using our normal
,
bouteForce

,
NP hard alg

running it through ALE
,
then outputting the answer given by All

.

What is a polynomial time -> An algorithm that does the "input transformation" described above
,
but specifically

reduction ? in polynomial time

-> Formally :
an alg o that transforms every instance X of A into an instance F(X) of B

St
. X is a "yes" instance of A iff . F(X) is a "yes" instance of B.

-> AB A is polytime reducible to B.



How does a poly-time reduction+ Take the ex from prev page ,
where we know that A is hard & want to prove that

prove that a problem is hard? B is hard .

-> By assuming that B has a poly-time aly ,

we were able to create a polytime

reduction that maps all A-inputs to B-inputs and prove that AEB
. Using this

poly-time alg ,
we were then able to actually solve A in polynomial time :

A LGA(X) :

y = transform-input(x) < a poly-time transformation

return ALEgly)

-> However , we already know thatA can't be solved in poly-time ,
so the above can't

actually be possible . Therefore
,
Bmust also be hard

. Otherwise it would mean that A

is easy ,
which it isn't

RECAP : What does it mean if -> B is at least as hard as A

AEB is true?
-

If A is hard
,

then it implies that B is hard.

-> If B is easy ,
then it implies that A is easy

RELAP : How do we
prove that -> Describing a polynomial-time algorithm F : A - B that satisfies the Following :

ALB ? 1. Forward direction : If X is "yes" inst
.

Of A
,
F(x) is a "yes" inst

.
of B.

2
Backward direction : If F(X) is a "Yes" inst . of B

,
X is a "yes" inst .

of A.

What does it mean if a problem
-> Fur all problems XENP

,
XB Caka a polytimealy For B would allow

B is NP-hard ? us to solve every problem &ENP in poly time

-> To show that Bis NP-hard
,

we just have to choose some problem already "known"

to be NP-hard
,

and reduce it to B
,

ala AEB For some A ENP .

What does it mean if a problem B -> BENP AND B is NP-hard.

is NP-complete ?

Summary : What are we doing
- We want to show that a problem Bishard.

But we can't do that
,
so instead,

in this chapter ? We say that B is "at least as hard" as some other problem A .

And we

prove this by proving that AEB
, by giving a poly time reduction

F : A + B
.



7
.2 : Independent Set to Vertex Cover

What is an Independent set ? -> For an undirected graph G
,
an "independent set" is a subset S of modes S

.
t.

none of the edges in G connect 2 of the nodes in the subset.

·
i

. e
.,

none of the modes in S are directly connected to each other.

-Fur,
then S = Ea

,
2

,
3

,
wh g an ind Set ble for

every

edge of GEu
,
v3

,
lueS Vv-eS) is true.

another .

What is the independent set problem? -> Input is (G , K) where the input is an undir . Graph G and K = an integer

->Problem Q : Does G contain an independent set of size at least K ?

RECALL : What is a Vertex cover ? - For an undirected graph ,
a "vertex lover" of that graph is a

subset of modes/vertices where
every edge in G touches one of those

nodes. For example ,
if G =

&D
,

then S = G2
,
3

,
03 its a vertex cover bin

everyI D-②

i
.
e., there are no edges connecting v = 1

,
2

,
3, or 4 to one

edge touches either v = 1
,

v = 3
,

or v = & Cor both

but S = E1
,
23 is not

.

What is the Vertex cover problem? -> Given (6
,
K) : Does & have a VC of size at most 17 nodes ?

What is the goal ?
-> Prove that VC is Np-hard by showing that ISEVC

·

ala
,
write a poly-time alg that converts every input to 1 .

S
. into an

input to VC S.t . X Elang .
IS i . f .

F . F(X) <lang.
VC

What is our poly-time reduction- FLG
,
KS : Given (G

,
13

,return [G
,
n-1)

aly F ? Independent _
Set (G

,
K) :

Y = F(G ,
k)

return Vertex-Cover (y)

How do we prove the correctness
-> To prove this

,
we must prove theForward & backward directions. For ex

,
to

of an alg
F ? prove thatf above is correct :

20 Forward : if X = <G ,
K) is a yes For 1

.

S
., prove that

*(x) = (2
,
n-1) is a yes For V

.
C

.

Why does this work?Backward : if x = Lo ,
k > is a no For 1 .

S
., prov

that F(x) = (G,n)

is a no For V . C.

·

ALTERNATIVELY
,
show : if F(x)= (G

, n-1) is a yes
for

VC
, provi that X = (G

,
1) is a yes for IS

& this one is usually easier to prove .



What is the Forward-direction -> If (G , 1) is a "yes" inst . of IS
,
then Ghas an ind

.
Jet - where IS/2K.

proof for I . S
. [V.

C .? -> Ex : Let G = D

&
and K = 3.

. Then Clocks is c "yso

it we let S = 51
,
2

,35

-> If S is an I
.

S
.,

that means that none of the edges thatbouch a mode in S

touch another mode in S
.

So
, every edge torching a node ins is also touching

a least one mode in G that isn't in S.

-> None of the edges "in" connect the modes to one another .
Therefore

,
if

we let X = &VI v is a node in G and VeS3-aka every node not

in S
,
aka VCG) -S then X has to be a vertex cover of G because

the edges touching modes in X will cover
, by def

, every node in X.
. But

they will also cover every mode in S bla the modes in S must be connected

to the graph somehow

-> SUMMARY : For CG
,
K)

,
if accepted by 15

,
then we can find a vertex cover

of at most V(G)-1 aka n-1 nodes. Thus (G
,
n-1) is accepted by VC.

What is the backward-direction -> EX : let G = D

proof for I . S
. [V.

C .? #Bankin
is

,a

-> If G is a "yes" of VC
,
that means JaVC S of G where ISK nok

-> the complement set S' = v/S Caka every mode not in S) is an IS of G and

IS'12K .
Therefore

,
(G

, 1) is a yes For IS.

SUMMARY : What does this proof -> Independent Set Vertex Cover

imply ? · If I
.
S

.
is hard

,
which we think it is

,
then UC is also hard.

What are some properties of
2

Reflexive : for all problems A
,

AEA

poly-time reductions ? · why ? Because FLX) = X is a correct reduction from A to A
.

e . g.

the alg just

outputs the ans returned by A.

2.
Transitive : For all A

,
B

,
C

,
if AIB and BEC

,
then AI

·Why ? To reduce A to C
,
we'd simply call the functionf to transform As input to

a B-input .
Then

,
transform that B-input to a C-input .

Then
,

run the input through

ALG
,

& return the ans.

What is NOT a property of polytimee Symmetric : fur all A
,

B
,

if AEB
,
it does NOT necessarily mean that BEA.

reductions ? · For ex
, VCE Haltim but Haltim is NOT reducible to VC



1
.
3 : 3-SAT to In ↳ Setdependen

RECALL COMP USS: What is the -> A set ofi boolean variables EX
,,

X2
,
... Xn3

,
and

3SAT problem imput? -> A set ofI clauses
,

where each clause is a boolean expression consisting of exactly

3. literals OM'ed together .

·

A "literal" = a boolean var OR its negation ,
e . g.

[
,,

X
,, *2 ,2 ,

et.

What is the problem Q ? -> Let 7 = a boolean expression where each clause in the input is AND'ed together.

· ZX : variables = EX
,, X2 ,X33 and

clauses = &(x
,
vxzVYz)

,
(F

, v Vxz) ,
(F

, vizv +33

Ten = (x
,

vx>Viz) v (FV V *) v ( F, VizV + 3)

~ Q : Is there an assignment 4 : Ex
,

... *n3 CST
,
F3 Lake an assignment

of each variable to either T or F) S .
t

. Levaluates toTrue ?

3SAT = E < Y > /Y is a satisfiable Boolean Formula 3
.

· EX :

Yes
,

because X
,

= T X
z

= F Xy = T lets = Tive

asically ,
an assignment to each variable S . t. For each clause

,
at least one literal

in the clause = T

(x
,
xyViz) v

CT
(T v F vF) N (Fv + v T)

T M T M T = T

Why is theSAT problem
- Because theLook-Levin Theorem proves & states that

,by definition le . g.

significant ? I -> B

NOT using a reduction)
,
that 3SAT is NP-hard.

· It is a KNOWN NP-hard problem.

-> Therefore
, any problem that we can reduce 3SAT to

,

we can then assert that

it is NP-hard .

·

e . g ., we will prove 3SATEIS
, which proves that I

.

S
. is NP-hard.

· We already proved that ISEVC
, so this will also implicitly prove that V

is NP-hard.

What is the goal ?
->Prve that IS is NP-hard by showing that3SAT& IS.

-> RECA 12 : I . S
.

= &(G
, 13 1 G has an Ind. set of size 23



What is our poly-time reduction
+ Ex : let L= (x

, -xzV *])N(v2Vxz)d(X, VEVXy)

F ? C #(3SAT input) :

20
For each clause Cj ,

add a "triangle" to G by creating one virtex per

literal in Gj and connecting the 3 vertices together.

·

Thus
,
if there areI clauses ,

G will initially have 31 modes and 31 edges.

G = X
, X X

x2
- xyyz -

Xy7z -

xz

28
Add Conflict edges" : For every mode v in G

,
add an edge between v and

all nodes whose associated literal is the negation of V.

G =

X
, X

x
--xy -

x

3
Let 17 = e = the number of "triangles" ala the number of clauses.

to
Return (G

,
1)

What is the forward direction -> If input is a "yes" For GSAT
,

then I an assignment + that satisfies all

proof ? clauses.

· EX : in ex above
,

Y = EX ,
= 5

, Xe= F
, xz = T3 satisfies all clauses

-> For each triangle in G
, say that we pick any literal in the triangle that evaluates

to true
,
and add it to our independent set.

· EX :
is S = 2x

,, 52 , 433X
,

- x

-> This selection S obviously has size 2K.

-> S is an independent set because :

·We only choose one node from each triangle ,
so obviously the edges connecting

each triangle won't interfere with our independent sent.

· The conflict edges are also not an issue BECAUSE We assigned each likeral to Tor F.

And for each triangle ,
we added a literal that evaluated to I to our 15 S . If a literal

b eval. to true
,
then it may have "conflict edges" to all nodes "5". But since

"B"Would then eval. to False
,

we would only ever have one of bort in our 1 .
S
.

bk >
they can't both be true

.



What is the backward direction> If we have an IS of size K = 1 where the modes are literals
,
and this input

proof? (G
,
k = 1) was a "yes" inst . of Independent Set :

G =

We can use this graph& the ISS X
,

(inthisex ,
S = EX

,
E2

,
X33) to construct- x

a "Yes" instance of 3SAT :

· For each literal in S
,
set it to be TRUE in the boolean assignment 4 :

T :

X
,

= T

*
z

= T So Xz= F

Yy = T or F
,
it doesn't matter

-> We can prove that this is a satisfying assignment for 2 reasons :

2)The assignments will not contradict each other
,
bla given the fact of the "conflict

edges"
,

if S is an Is
,
it will not contain both band for any literal b.

· aka "T is well defined
"

20

The assignment satisfies every clause ble each triangle represents a clause
,
and each

triangle adds at least I mode to S.



1.N : Vertex Cover to Dominating Set

What is a dominating set ? - A subset of vertices s . t. for all modes utV
,

u is either in S
,
or a has a

neighbor in S

· Basically "covering every vertex"
, Unlike VC

,
which tries to "cover every node".

· -o
-> EX : S = 51 ,

13 is a dominatingset.

Oj

What is the Dominatingset problem?
-> Input : (G ,

k)

-> Problem : Does G have a dominating set of size at most K ?

· e .g -,
with 1 nodes

,

can we "cover every vertex" ?

RELALL : What is the Vertex Lover -> For (G , K)
,
Does G have a VC of size at most K nodes ?

problem?
-> Vertex Lover : Subset of vertices S .

t -

every edge has at least I endpoint in 5
.

What is the goal
? -> Prove that DS is hard by showing that Vertex Cover Dominatingset

· Given a "yes" instance of VC
,
write a poly-time function to output a

"yes" instance of DS .

Why can't our function &(G ,1)
->

Returning there input almost satisfies the Forward direction : If G has no

just return (G , K) ?
isolated vertices (e . g- every mode has 21 edge) ,

then a Graph wha VC of

size K will have a DS of Sitck

· But ifG has isolated vertices
,

like
"O

,
then it could be a yes for

V( but a no For DS
.

-> This reduction also doesn't satisfy the backward direction :

↳=

↳ ·Where K = I would be a NO For VC
,
but a yes for DS.I

3 .

30

⑯ /

How do we solve this problem? - Intuition for reductions : "AEB" Solve A given a 'Solver' For B.

->
Given a "solver" for DominatingSet ,

we need to turn our graph G-which covers

1 edges - into agraph G which covers K nodes
.

·Somehow convert every edge to a vortex ?

what will be our poly time -.
Given G

,
construct a new graph G = G,initially .

Then
,
for each edg et E(G) :

reduction E ?
· add a new vertex Xe to G

· add the edges (U ,Me) and (v
, Rel

-> Intuitively ,
we are placing a new vertax "next to

"

each edge

2.
Set K' = K + 1 I (G) 1

,
where I (G) is the set of isolated vertices in G

.

Return (6
,
K')

k = 1 G =
K =I (no isolated vertices)

-> EX =

- =

0
Wit *

p

① ↑ 2

② ⑬



What is the Forward -> Given a jes" instance of VC
,

let S beavertex cover of G S . t . ISIEK.

direction proof? -> We claim that S' = SU ICG) will always be a dominating set of G

·
aka

,
for any vertex uEVCG

,
uES' or u has a neighbor in s.

-> Why can we claim this ?

2. If Ul (6) (the isolated vertices in G) or uES
,

then obviously UES'

2. If UEV2G) and DES-ala ,
an "old" log vertex from graph G that

wasn't in the V .

C
.
S

,
then u has at least one neighbor in S'

,
because

we know that Sisa V o G
, meaning alledges attached toa must be

"covered" -

meaning that at least one neighbor ofa is in S and therefore

in Si

3,
If utVCG) and UV(6)-aka the new vertices added in the reduction :

· Given a "yes" instay VC
,

we know - set which covers all edges Jaka one

endpoint of every edge is in S) : 05 = 51 ,
35

·
-3

·

All the new edges are added "along" exististingedges .
Since we know that

those edges arecovered by nodes ins
,
the same nodes in Swill end uptouching

every newvertex te added : Dd
What isthe backwards direction -> Let S = (6

,
1 + /ICG)1) be a "yes" instance DS

,
where S' is a Ds of G

Proof ? where size K nodes.

·We can't just claim "S'
is a vd of G" like we did in the Fund

. Proof ,
bi G

has vertices that G doesn't and those could be in the DS S :

-> We will convert S' to a subset S of nodes in G
,

which is also a VC of size K.

This will prove that "yes" instances of DS (F(VC - Input)) (running DS with the

transformed inputs given by the reduction) correspond to "yes" instances of VCV) -Input).

How will we convert Sto S ? 2. Start with S = 0 (empty)

2.
For all u in S':

·

if ut VCG)
,

add a to S

· otherwise (if u is a new vertex added by the reduction) : add either neighbor

of u to S

· If u is in ILG)
,

do not add it to S.

-> SKIPPED : Rest y backward prof showing why "S' is DS G"E"Sisa VI of G
"

What is true about the Domset -> Domset ENP (notsolvable in polytime , but is brite forcable)

and VC problems ?
-> VC ENP-Complete (aka VENP AND VCENP-hard)

·

WP-Hard =
every problem in NP reduces to VC .



7
.
5 : Directed to Undirected Hamiltonian Cycle

RELAP : What are we doing in -> We want to show that a problem B cannot be solved by a polynomial-time

-> We can't actually prove that
,
but if I a problem A that I believed to be NP-Hard,

and we can show that AEB (A is poly-time solvable given a "Solver" For B),

then we can prove that B is at least as hard as A.

What is the DirHamCycle problem
?- Input : Directed graph G

.
Does G contain a Hamiltonian Cycle (a Cycle

that visits each node exactly oncel ? Ex "no" instance G :

EX'yes" instance 6 : D-B ①Q

Erb - ↓

What is the Hamcycle problem? -> Input : Undirected graph G
.

Does G Contain Hamiltonian Cycle ?

Chapter 7 ?

I
3.

alg... aka that B ENP-Hard

⑬

What is the goal ?
-> Prove that Ham Cycle is at least as hard as DirHamCycle by proving

DirHamCycle Hamcycle

How do we construct our reduction -> Given a Directed graph G
,
if G has a HC

, return an undir graph G that has

F ? a Ham Cycle .

- ex : G = 00
- 5

↳③Or
-> REDUCTION : Construct Gas follows :

1 :

For each node uEVCG) : add 3 nodes &Kin
,
n , on

3 to G

⑪D ⑫
⑳D⑮

2·
For each node UEV(G) : add Ledges (Win

,
U) and Cu

,
Yout to G

Laka
, every verte gets replaced by a path of length 2

-D &--
⑨-D-

For each edge (u ,
v) E ECG) (in the oggraph) : Add the edge (Yout

,
"in

to G'
. "You," represents the node sending out-neighbors from "n"

-D &--
⑤-5

①D--



What is the Forward direction - 186 has : dir
. Ham cycle C

,
we can construct a HC Cin G by simply

proof ? Following C
,

but instead of jumping from mode u to mode and so

on
,

we "enter" a node at Win
,

then u
,

then out ,
THEN vin For the next

Vertex in C
,
and so on .

· C'goes ut How -vin for every time goesa

-> EX : - C could = 1-2-3-1-5)
,
so

- a③
Dr ③

C = line +lout -> 2 in-2- Zoop-3 in

-> 3-bott in eye out Sines
-> Sony e in

-D &--
⑤-5

①D--

What is the backward direction -
Suppose G' has a Ham Cycle C

.
Like

Proof ?
-> consider any vertex u = 0 .g . graph G . In C

,
thereE

must exist a subpath (Win
,

U
, Kout) . After

·imu
visitingYout ,

I'must visit some vertex vin .
It Must

go to v
, rout after

that
, consecutively

-> Therefore ,
we can construct a HC in G by taking and removing every

Vertex Bot in Glaka the "in" and "out" vertexes

· Ex above : C = (inel-lou + 2 in-2-Zout-bintbebout-in

· so C = 1-2-3 +1
,

which is an HCinG : D-

↳d

(nondeterministic
Poly time

& NP-complete -
not solvable

RECAP of Ch .
7 ?

NP

#
NP-Hard

in
polytime

P · SubsetSum

· 3-coloring
·LIS

· 3SAT [IS = VC [ Domset
· MST

·DirHCHL
· 0/1 knapsack

-> 3-SAT has been proven NP-complete/Hard who a reduction (Look-revin Thm .)



orithmsApproximation Alg

problems ? to solve them

· We don't know
,

bla we haven't found one yet. But maybe

·

These problems are in NP or NP-hard.

But what if we still need (101) - We have to give up one of the two : · polynomial time
-

to solve them ? · optimality (accuracy of ans)

What are approximation algorithms? - Algorithms to solve hard problems within polynomial time
, by sacrificing

Whats the deal w/ unsolvable

I
-> For many problems (like 3SAT

,
VC

,
etc . )

,
there probably iso poly-time als

optimality (ability to ALWAYS yield the exact correct answer)
,

& instead delivering
an approximation.

-> Approximation algorithms :

· Don't always return an optimal solution-but often quite close

· Always run in poly-time

·

Are relatively simple

What is a -approximation -> Fur a given problem ,
such as a minimization problem , let OPT denote the true

, actual

algorithm ? optimal solution. Let ALG denote the solution given by the Approx . Alg
.

-> DEFN : a d-approx-alg for a given problem always returns a solution whose

value ALG is within a Factor X of OPT.

minimization -> MiWhat does this mean for
·

nimization :

vs maximization problems? There exists a <1 S
.
t
.,

on every instance of the algorithm,

OPTI ALG <C · OPT

-> E . g .,
a 2-approxaly returns a value ALG that is at most 2. OPT away from the

right answer

-> Maximization :

There exists a d1 S
.
t
.,

on every instance of the algorithm,

OPTI ALGI C. OPT

What is the appro ximation ratio -> The smallest val my &S .t . the algorithm is a proven C-approximation algorithm.

of an algorithm? -> To prov an <-approx alg's correctness
,

show that the alg satisfies one of the

2 inequality statements about
(depending on the type of the problem) - on every instance.

&
c. g.,

a 2-approx alg is also a 3-approx aly ,
but the ratio is 2 ble thats the smallest

possible.
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1 : Vertex Lover-

RECALL : What is the UC problem ?
- A minimization problem : for a graph G

,
return the smallest possible VC : aka a

Subset S of V S
.t .

Fur all eet
,

e has at least one endpoint in S

What is our goal ?
-> Described 2-approxalg for UC : The alg returns a subset of nodes ALG S

.

t.,

For any graph G
,

IOPT(G)1[PALG(G)1 = 2-1OPT (2)

· Aka
,

IALGY is at most 2x the size of OPT
,

/OPTI ·

· For ex
,
if G = D-E

,
PopTO = 2 and 2 = /ALG =J

⑤
What will our aly be ? - A Greedy algorithm : For each edge etG

,
add both endpoints of e to S,

and remove the endpoint vertices [U , v3 from G
. Repeat this process until G

has no edges.

· NOTE that when we remove a vertexa from a graph ,
we also remove

all edges touching u.

VC-Matching (G , 1) :

S = empty set

while G has an edge e = Su
,
v3 :

add u to S

add v to S

remove u and from 6

return S

( not decision type)

I
S = E3 S = [1 ,

23 S = 51 ,
2

,

5
,
63 S = 51 ,2 ,

0
,
6

,
5

,
83

How do we prove its correctness ? - Prove the Theorem: For all possible G
,

JALG(G)/ = 2 · /OPTCGS

~ Proof : Consider the set of edges "chosen" by ALG Cake the edges that we actually

"look at"before removing its endpoints ,
as opposed to edges that get automatically

deleted when we remove a node u from 6) .

·Those edges form a matching M : a subset of edges S
. t .

no Ledges in M share

an endpoint. Forex:-PXY
How do we know that the set> When we consider an edge ,

we remove its endpoints meaning that we automatically remove

-

- edges considered is a Matching? everyedge that would share an end point with it

· :
- o

2

S

o

.,L
6 z

· Edges considered :

·



What do we know about the -> /OPTI = /MI : OPT has at least /MI nodes
,
because OPT must be a subset that

OPT Subset VC for a graph G ? covers every edge ,
and the edges in M Share NO nodes ; there's no overlap. At

least one endpoint of each e eM must be in OPT.

·

Where M = the maximum matching of G .

What do we know about the ALG -> In thealg ,
we add 2 nodes for each edge considered. We have already shown

subset returned by our alg? that alg considers at most /Ml edges .
Therefore , we add at most

2 x /MI nodes to our subset ALG in our algorithm .

How does this come together
->

1ALGI(2
: /MID =(210PTI)

to prove that our approx . Elg
or "

= "According to the
& because IMI EIOPTO !

Lecture butidk

- 8
.
2 : Load Balancing

-

What is a scheduling problem? -> We havem jobs and m machines
,

and we need to assign each job to a

machine.

-> Every job has a corresponding length & (n)

-> For a given jobs-to-machines assignment ,
for each machine M

,
the load on

m = the sum of the lengths of every job assigned to M

-> For a given jobs-to-machines assignment ,
the makespan of the assignment

is correct ? I (minimize the max load)

is the maximum load created by that assignment-aka ,
the load of the machine

WI the heaviest load
.

What is the Load Balancing
-> INPUT : (1

,
m)

,
where I is an array of size 18 l9i] for i = 2

... n is the

problem? length of job i.

And m = the of machines.

-> GOAL : Return an assignment of jobs-to-machines S .t .
the makespan is minimized

> EX : if l = [3
,

1
,
2] and m = 2

,
the OPT solution is to assign job I to one machine,

and jobs 2 & 3 to the second machine : jobs:N
-> The Decision-version of this problem (e . g .,

M. 3 Makespan = 3

given 1
,
m

,
and a makespank ,

does there exist M22

an assignment s .t
.

the makespan [K ? ) is NP-Hard.

What is our goal ?
-> Describe a 2 approx Algorithm for L .B.: On every instance of 11

,
m)

,
the makespan

Male of our assignment ALG returned by the algorithm should be at most 2- Mopt



What is our algorithm ?
-> Greedy : For each job I, pick the machine M ; w/the current smallest load and

assign j to Mi
.

- algorithm to return val of makespan

Load-Balancing (1 ,
m) :

min-load =

index = 0

machines = [0] & M

for job in range 1... -l :

-for i in range 1
,
---m :

if machines [i] < min-load :

Min-load = machines[i]

index = i

machines [i] + = & [job]

return makespan = min (machines)

What is an online algorithm?
- Analythat can make its final decisions & determine an answer who knowing what

the future holds. This aly is an example.

What theorem do we have to prove -> the val. of the makespan of ALG returned by our alg-which we'll call T
,

is - 20PT

for correctness ? -> Proofi

①
OPT - the true minimal Makespan

- is at least the sum o all ofthe loads of all

jobs ,
divided by the of machines m :

opt=
M

· The absolute ideal assignment would be one where we can split the jobs evenly over all

machines S .t
.

each machine has the same load . Obviously
,

we can't possibly have

a smaller make span than that

·

E . g .,if Cit = 20 and we have 5 machines
,
the Makespan is 2015 = J,

at minimum -

we would only be ableto achieve this if the loads of the indiv . jobs

allow it.

Cta . next page



⑧ The makespan T can be thought of as a vertical line :

mi 11 213/5
I

my
: / 60 L

'
mji 01 9 1 easi
Mm : 101 8 12 Ton

&

t
-> If I is ALG's makespan

,
let Mi = the machine w/the max load .

Let job I be the last

job added to mi .
Aka

, after job k was added
,
the value of T was determined.

-> At the time that the alg was deciding on where to place job R
,

the load of every
machine had a load of at least T-l[17]

·

Why ? B12 alg. Chose to add jub k to machine M ; BECAUSE it had the smallest

load at that point in time . My 's load after adding job in became Mi-load +

eCK]
,which ended up being

T

.

·

If any other machine had a load less than T-1CK]
, aly-world have chosen to place

job 1 on it.

-> Given this
,

the sum of all the loads must be at least mx (T-1(k]] .

Ex :

mi
- T - 1Ck]

m2
ST - R(k]

mi kiT

my & T - R(k]

Ye2i] = m . (+ - eCk])
j= 1

&
Opt 2 lCk] - where I is the last job that gets computed .

-> Now combine observations 1
,
2

,
and 3 :

Most - 1C) 15

T & 12j)
+ 1[k] I rearranging observation 2

M

-> Since Ogave thatIOPT and gave that CK] OPT,
M

we can say that :

+ 125)
+ 1(k] = TEOPT + OPT = TEZOPT !

M


